B. E.

in

FOOD TECHNOLOGY

(APPLICABLE FOR STUDENTS ADMITTED FROM THE ACADEMIC YEAR 2021-2022 ONWARDS)

SCHEME & SYLLABUS

DEPARTMENT OF FOOD ENGINEERING AND TECHNOLOGY
SANT LONGOWAL INSTITUTE OF ENGINEERING AND TECHNOLOGY (SLIET)
LONGOWAL-148 106
SANGRUR, PUNJAB
INDIA

VISION OF THE DEPARTMENT

To be a centre of excellence in training, research, outreach and consultancy services in food engineering and technology with emphasis on value addition of agricultural produce, food bioprocessing and technology, food nutrition, food quality and safety.

MISSION OF THE DEPARTMENT

- 1. To produce trained technical manpower of highest standard in the field of food engineering and technology
- 2. To re-orient and develop safe food products by applying fundamental and applied technologies
- 3. To provide solutions to the problem and leadership in the area of education, training and research

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

- 1. To develop the ability to apply the knowledge of Science, Mathematics, Computing and basic Engineering fundamentals to make students capable to analyse, interpret and design.
- 2. To develop the capability to apply latest engineering tools and techniques in Food processing with respect to social and global framework.
- 3. To create competent Professionals inculcated with leadership qualities and ethical responsibilities.
- 4. To develop the ability to communicate proficiently and work in a multidisciplinary team and competitive environment.
- 5. To build up the knowledge of current issues and capability to engage in life-long learning process and enable the students in totality to start-up their own business organizations or work as leaders in food industries.

PROGRAM OUTCOME (PO)

Engineering Graduates will be able to:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis:** Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and teamwork:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- **11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning:** Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME (PSOs)

PSO1: Graduates having an ability to identify, analyse and solve technical problems relating to food systems together with allied streams.

PSO2: Graduates will be able to build the nation, by imparting technological inputs and managerial skills to become technocrats, entrepreneurs and will be able to develop new concepts on various emerging fields and pursue advanced research.

		Semester-I Group-B (FET)					
S No	Sub Code	Subject Name	L	T	Р	Hrs.	Credits
1	BSMA-401	Engineering Mathematics I	3	1	0	4	4
2	BSCH-401	Applied Chemistry	3	1	0	4	4
3	ESME-401	Elements of Mechanical Engineering	2	1	0	3	3
4	ESME-402	Workshop Technology and Practice	1	0	0	1	1
5	HSMC-401	English Communication and Soft Skills	1	0	0	1	1
6	BSCH-402	Applied Chemistry Lab	0	0	2	2	1
7	ESME-403	Elements of Mechanical Engineering Lab	0	0	2	2	1
8	ESME-404	Engineering Drawing	0	0	4	4	2
9	ESME-405	Workshop Technology and Practice Lab	0	0	4	4	2
10	HSMC-402	English Communication and Soft Skills Lab	0	0	2	2	1
11	MCCH-401	Environmental Studies	3	0	0	3	0
		Total	13	3	14	30	20
		Semester-II A Group-B (FET)					
S No	Sub Code	Subject Name	L	T	P	Hrs.	Credits
1	BSMA-402	Engineering Mathematics II	3	1	0	4	4
2	BSPH-401	Applied Physics	3	1	0	4	4
3	ESEE-401	Elements of Electrical Engineering	2	1	0	3	3
4	ESCS-401	Elements of Computer Engineering	2	0	0	2	2
5	ESEC-401	Elements of Electronics Engineering	2	0	0	2	2
6	BSPH-402	Applied Physics Lab	0	0	2	2	1
7	ESEE-402	Elements of Electrical Engineering Lab	0	0	2	2	1
8	ESCS-402	Elements of Computer Engineering Lab	0	0	4	4	2
9	ESEC-402	Elements of Electronics Engineering Lab	0	0	2	2	1
		Total	12	3	10	25	20
		Semester-II B Group-B (FET)					
1	TPIN-421	Practical Training During Summer Vacations (In-house) 02 weeks				80	1 (S/US)
2	TPIN-422	Technical Competency					1 (S/US)

		Semester-III Group B (FET)										
S No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits					
1	ESME-501	Engineering Mechanics	3	1	0	4	4					
2	PCFT-511	Food Chemistry	3	1	0	4	4					
3	PCFT-512	Food Microbiology	3	0	0	3	3					
4	PCFT-513	Heat and Mass Transfer	3	1	0	4	4					
5	HSMC-501	Principles of Management	3	0	0	3	3					
6	PCFT-514	Heat and Mass Transfer Lab	0	0	2	2	1					
7	PCFT-515	Food Chemistry and Microbiology Lab	0	0	2	2	1					
8	MCMH-501	Indian Constitution	3	0	0	3	0					
		Total	18	3	4	25	20					
Semester-IVA Group B (FET)												
S No	Sub Code	Subject Name	L	T	Р	Hrs.	Credits					
1	BSMA-501	Numerical and Statistical Methods	3	0	0	3	3					
2	BSMA-502	Numerical and Statistical Methods Lab	0	0	2	2	1					
3	BSBL-501	Biology for Engineers	2	0	0	2	2					
4	PCFT-521	Food Biochemistry and Nutrition	3	1	0	4	4					
5	PCFT-522	Food Biotechnology	4	0	0	4	4					
6	PCFT-523	Food Engineering	3	1	0	4	4					
7	PCFT-524	Food Engineering Lab	0	0	2	2	1					
8	PCFT-525	Food Biochemistry and Nutrition and	0	0	2	2	1					
	1 61 1 323	Biotechnology Lab			_	_						
		Total	15	2	6	23	20					
		Semester-IVB (FET)										
1	TPID-521	Industrial Training 02 weeks				80	1 (S/US)					
2	EAA-521+	Fractional credit course/Extra Academic Activity +GROUP A/B/C					1 (S/US)					

		Semester-V-A Group-B (FET)											
S No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits						
1	PCFT-611	Technology of Animal Product	3	0	0	3	3						
2	PCFT-612	Dairy Technology	3	0	0	3	3						
3	PCFT-613	Animal Product Technology and Dairy Technology Lab	0	0	4	4	2						
4	OEXX-611	Open Elective-I	3	0	0	3	3						
5	OEXX-612	Open Elective-II	3	0	0	3	3						
6	PEFT-611	Professional Elective-I	3	0	0	3	3						
7	HSMC-603	Engineering Economics and Entrepreneurship	3	0	0	3	3						
		Total	18	0	2	20	20						
		Semester-V-B Group-B (FET)											
1	EAA-611+	Fractional credit course/ Extra Academic Activity +GROUP A/B/C					1 (S/US)						
	Semester-VI-A Group-B (FET)												
S No	Sub Code	Subject Name	L	T	Р	Hrs.	Credits						
1	PCFT-621	Technology of Cereal, Pulses and Oilseeds Processing	3	1	0	4	4						
2	PCFT-622	Technology of Fruits and Vegetable Products	3	0	0	3	3						
3	PCFT-623	Plant Foods Lab	0	0	2	2	1						
4	OEXX-621	Open Elective-III	3	0	0	3	3						
5	OEXX-622	Open Elective-IV	3	0	0	3	3						
6	PEFT-621	Professional Elective-II	3	0	0	3	3						
7	HSMC-601	Technical Communication	2	0	0	2	2						
8	HSMC-602	Technical Communication lab	0	0	2	2	1						
		Total	17	1	4	22	20						
		Total											
		Total											
		Semester-VI B Group-B (FET)											
1	TPID-621					160	2 (S/US)						
1 2	TPID-621 EAA-621+	Semester-VI B Group-B (FET)				160	2 (S/US) 1 (S/US)						

		Semester-VII Group-B (FET)					
S No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	PCFT-711	Food Analysis and Quality Control	3	1	0	4	4
2	PCFT-712	Packaging Technology	3	0	0	3	3
3	PCFT -713	Food Analysis, Quality Control and Packaging Technology Lab	0	0	2	2	1
4	OEXX-711	Open Elective-V	3	0	0	3	3
5	PEFT-711	Professional Elective - III	3	1	0	4	4
6	PEFT-712	Professional Elective - IV	3	0	0	3	3
7	PRFT-711	Project Stage I and Seminar	0	0	4	4	2
		Total	15	2	6	23	20
		Semester-VIII Group B (FET)					
S No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	PEFT-721	Professional Elective - V	3	0	0	3	3
2	PEFT-722	Professional Elective - VI	3	0	0	3	3
3	PRFT-721	Project Stage - II	0	0	12	12	6
		Total	6	0	12	18	12
		OR					
S No	Sub Code	Subject Name	L	Т	Р	Hrs.	Credits
1	INID-721	Internship in Industry	0	0	40	40	6
2	PRFT-721	Project Stage - II	0	0	12	12	6
		Total	0	0	12	12	12

LIST OF OPEN ELECTIVES COURSES

S.NO.	Sub. Code	Subject Name	L	Т	Р	Hrs.	Credits
1	OEFT-611	Open Elective-I	3	0	0	3	3
a)	OEFT-611A	Separation Technology	3	0	0	3	3
b)	OEFT-611B	iochemical Engineering		0	0	3	3
2	OEFT-612	Open Elective-II	3	0	0	3	3
a)	OEFT-612A	Principle of Food Processing	3	0	0	3	3
b)	OEFT-612B	Principle of Food Preservation	3	0	0	3	3
3	OEFT-621	Open Elective-III	3	0	0	3	3
a)	OEFT-621A	Food and Nutrition	3	0	0	3	3
b)	OEFT-621B	Unit Operations in Food Processing	3	0	0	3	3
4	OEFT-622	Open Elective-IV	3	0	0	3	3
a)	OEFT-622A	Fundamentals of Biotechnology	3	0	0	3	3
b)	OEFT-622B	Food Laws and Regulations	3	0	0	3	3
5	OEFT-711	Open Elective-V	3	0	0	3	3
a)	OEFT-711A	Flavor Technology	3	0	0	3	3
b)	OEFT-711B	Food Plant Sanitation and Waste Management	3	0	0	3	3

LIST OF PROFESSIONAL ELECTIVES COURSES

S.NO	Sub. Code	Subject name	L	T	Р	Hrs	Credits
1	PEFT-611	Professional Elective-I	3	0	0	3	3
a)	PEFT-611A	Fluid Flow Operation	3	0	0	3	3
b)	PEFT-611B	Post-harvest Engineering	3	0	0	3	3
2	PEFT-621	Professional Elective-II	3	0	0	3	3
a)	PEFT-621A	Food Storage Engineering	3	0	0	3	3
b)	PEFT-621B	Technology of Bakery and Confectionary Products	3	0	0	3	3
3	PEFT-711	Professional elective-III	3	0	0	3	3
a)	PEFT-711A	Health and Functional Food	3	0	0	3	3
b)	PEFT-711B	Technology of Food Plant by Product Utilization	3	0	0	3	3
4	PEFT-712	Professional Elective-IV	3	0	0	3	3
a)	PEFT-712A	Technology of Beverages	3	0	0	3	3
b)	PEFT-712B	Industrial Microbiology	3	0	0	3	3
5	PEFT-721	Professional Elective-V	3	0	0	3	3
a)	PEFT-721A	Food Additives and Ingredients	3	0	0	3	3
b)	PEFT-721B	Technology of Fats and Oils	3	0	0	3	3
6	PEFT-722	Professional Elective-VI	3	0	0	3	3
a)	PEFT-722A	Food Processing Plant Layout and Design	3	0	0	3	3
b)	PEFT-722B	Innovative Techniques in Food Processing	3	0	0	3	3

LIST OF SUBJECTS TO BE OFFERED FOR HONOR DEGREE IN FOOD TECHNOLOGY

Semester	Sub. Code	Subject name	L	Т	Р	Hrs	Credits
V	HDFT-611	Enzymes in Food Processing	3	1	0	4	4
V	HDFT-612	Basic Agricultural Process Engineering	3	1	0	4	4
VI	HDFT-621	Instrumental Techniques in Food	3	1	0	4	4
VII	HDFT-711	Food Rheology	3	1	0	4	4
VIII	PHFT-721	Project Honors	0	0	8	8	4
		Total	12	4	8	24	20

LIST OF SUBJECTS TO BE OFFERED FOR MINOR DEGREE IN FOOD TECHNOLOGY

Semester	Sub. Code	Subject name	L	T	Р	Hrs	Credits
III	MDFT-511	Food Processing and Preservation	3	1	0	4	4
IV	MDFT-521	Food Biochemistry and Nutrition	3	1	0	4	4
V	MDFT-611	Plant Food Product Technology	3	1	0	4	4
VI	MDFT-621	Unit Operations in Food Engineering	3	1	0	4	4
VII	MDFT-711	Engineering Properties of Foods	3	1	0	4	4
		Total	15	5	0	20	20

Structure of BE (Food Technology) program in comparison with the model curriculum

Course Components	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits	As Per AICTE
Basic Sciences	15.0 27		24	25
Engineering Sciences	15.0	33	24	24
Humanities and Social Sciences	6.9	13	11	12
Program core	31.9	57	51	48
Program Electives	11.9	19	19	18
Open electives	9.4	15	15	18
Projects	5.0	16	8	
Practical/Industrial Training	3.1	4	5	15
Extra Academic activities	1.9	11	3	
Total number of Credits			160	160

Title of the course : Food Chemistry

Subject Code : PCFT - 511

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Objective: Objective of this course is to impart knowledge about

- To develop an understanding of how individual food components contributes to the overall quality of foods during processing and storage.
- To provide an understanding of the chemical changes that takes place with food components during processing and storage and their effects on sensory and nutritional quality, functional properties, and safety of foods.
- To familiarize the student with common analytical and experimental methods used in the study of the food components, food safety and food control.
- To examine the basis of food chemistry-related issues in food safety, regulation and current events.

Course Outcomes:

CO1	Explain about chemical composition and structure of macro- and	Understanding
	micro-constituents of food and their functions in foods quality	
	control	
CO2	Describe physicochemical aspects of food constituents and their	Understanding
	interaction with food	
CO3	Elaborate the role of nutrients in different food product stability,	Understanding
	and effect of processing	
CO4	The students will be able to elaborate the role of nutrients in	Applying
	different food product stability, and effect of processing	
CO5	Evaluate impact on food constituents during food processing	Applying
	along with analytical technique, principles and methodology for	
	their estimation and quality analysis/control	

						CO/I	PO Map	ping						
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)												Spe Outc	gram cific omes SO)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	0	0	2	0	1	0	1	0	0	3	3	2
CO2	2	3	1	2	0	3	1	0	2	3	3	3	3	2
CO3	2	2	2	0	0	1	2	2	2	1	1	1	3	2
CO4	0	2	2	3	3	1	0	3	2	0	3	3	3	3
CO5	1	1	1	3	2	2	3	3	3	2	3	3	3	3
Average	1.6	2	1.2	1.6	1.4	1.4	1.4	1.6	2	1.2	2	2.6	3	2.2

Unit	Main Topics	Course Outlines	Lecture (s)						
I	Introduction	Developments in food chemistry and role of food chemist in	3						
		food processing and preservation, food control, safety and							
		adulteration prevention.							
	Water	Importance of water in foods. Structure of water & ice.	6						
		Concept of bound & free water and their implications. Water							
		activity: Principles, measurement, control, effects, related							
		concepts, water migration and basis for food preservation,							
		Sorption isotherms, Dispersed systems in food							
	Proteins Classification, structure, chemistry. Physical and chemical								
		characteristics of amino acids and proteins. Isolation and							
		purification of amino acids, peptides, proteins. Qualitative							
		and quantitative analysis of amino acids and proteins. Effects							
		of food processing: changes occurring in chemical,							
		functional & nutritional properties of proteins. Roles of							
		proteins in food structure, color, flavor, and texture							
	Lipids	Structure, classification, physical and chemical properties,	8						
		Utilization of fats and oils in margarine, shortenings, salad							
		and cooking oils. Importance of fats and oils in food product							
		development and diet. Roles of lipids in food structure, color,							
		flavor, and texture.							

II	Carbohydrates	Classification, structure. Physical and chemical properties and functions of saccharides (Sugar derivatives, oligosaccharides, starch, hemi-cellulose and pectic substances). Dietary fiber: components, properties, analysis. Changes in carbohydrates during processing. Roles of carbohydrates in food structure and texture.	10					
	Browning Enzymatic and non-enzymatic browning reactions and their influence on color, flavor, and texture of raw and processed food, control of browning reactions.							
	Vitamins	Sources, types, chemistry and functions. Effect of processing and control	6					
	Plant pigments	Structure, sources, importance and properties of chlorophyll, anthocyanins, carotenoids, flavanoids, and myoglobin. Chemical changes during processing and control	6					
]	Flavor and	Theory of flavour and taste. Importance and techniques of	5					
	aroma of foods	retention of flavour and aroma in foods.						
		Total	61					

Author	Title
1. Meyer	Food Chemistry
2. Fenemma	Food Chemistry
3. Belitz	Food Chemistry
4. Lee	Basic Food Chemistry
5. Lehninger	Principles of Biochemistry

Title of the course : Food Microbiology

Subject Code : PCFT - 512

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- Food microbiology and microorganisms
- Various techniques in handling of microorganisms
- The role of microorganisms in the production of various food products
- The association of microorganisms in food spoilage and their control

Course Outcomes: On successful completion of the subject, the students will be able to

CO1	Discuss the morphology, structure and reproduction of Microorganism	Understanding
CO2	Recognize the Microbial growth and death kinetics and apply the	Applying
	techniques of pure culture.	
CO3	Explain the Microbiology and Microbial spoilage of Food products.	Understanding
CO4	Describe spoilage microorganism, toxin produced and there effect on	Understanding
	Human.	
CO5	Implement the knowledge of various methods for Microbial Control	Applying

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)								Program Specific Outcomes (PSO)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	1	1	0	1	1	0	2	3	3
CO2	3	2	2	1	2	1	1	0	1	1	0	2	3	3
CO3	3	2	2	1	1	1	1	0	1	1	0	2	3	3
CO4	3	2	2	1	1	1	1	0	1	1	0	2	3	3
CO5	3	2	2	1	1	1	1	0	1	1	0	2	3	3
Average	3	2	2	1	1.2	1	1	0	1	1	0	2	3	3

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Importance and historical developments in food	8
		microbiology, prokaryotic and eukaryotic cell,	
		morphology, structure, microbiology and reproduction of	
		bacteria, yeast and mold.	
	Techniques of	Serial dilution, pour plate, streak plate, spread plate, slant,	4
	pure culture	broth and enrichment culture, lyophilization.	
	Microbial growth	Definition, growth curves (different phases), synchronous	8
	and death	growth, doubling/generation time, intrinsic and extrinsic	
	kinetics	factors, relationship between number of generations and	
		total number of microbes.	
II	Microbiology and	Microbiology of raw milk and fermented milk products	10
	microbial	viz. yoghurt, cheese; cereals products, fruits and	
	spoilage of Food	vegetable, meat and meat product, egg and fish.	
	Products		
	Food spoilage	Bacterial and fungal food spoilage, food poisoning, food	10
		borne infection, food borne intoxication. Toxins produced	
		by Staphylococcus, Clostridium, Aspergillus; bacterial	
		pathogens-Salmonella, Bacillus, Listeria, E. coli, Shigella,	
		Campylobacter.	
	Microbial	Source of microorganisms, Physical and chemical agents	4
	Control	used in microbial control, disinfected agents and its	
		dynamics.	
		Total=	44

Author	Title
1. M.J. Pelczar, E.C. Z. Chan, N.R. Krieg	Microbiology
2. George J Benwart	General Microbiology
3. Frazier & Westhoff	Food Microbiology
4. Jay, James M., Loessner, Martin J., Golden,	Modern Food Microbiology
David A	
5. Michael P. Doyle1, Francisco Diez-	Food Microbiology: Fundamentals and
Gonzalez, Colin Hill	Frontiers

Title of the course : **Heat and Mass Transfer**

Subject Code : PCFT-513

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Objectives: Objective of this course is to impart knowledge about

- The basic understanding to the various modes of heat transfer, mechanisms of boiling and condensation which are fundamental to food processing operations.
- The concepts of unsteady heat transfer, a predominant phenomena of heat transfer in food processing.
- The concepts of design of heat exchangers for a given heat load used in food industry.
- The concepts of steady and unsteady mass transfer, predominant phenomena in food processing operations.

Course Outcomes:

CO1	Interpret the principle of conduction and convection heat transfer in food	Applying
	processing.	
CO2	Explain the boiling and condensation phenomenon on various geometrical	Understanding
	surface.	
CO3	Describe the principle of radiation heat transfer.	Understanding
CO4	Execute the knowledge of heat transfer to design heat exchanger	Applying
CO5	Explain the concept of steady state and unsteady state mass transfer	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)											Program Specific Outcomes (PSO)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	0	1	0	1	1	1	1	3	2
CO2	3	3	2	2	1	0	1	0	1	1	1	1	3	2
CO3	3	3	1	2	1	0	1	0	1	1	1	1	3	2
CO4	3	3	1	2	1	0	1	0	1	1	1	1	3	2
CO5	3	3	3	2	1	0	1	0	1	1	1	1	3	2
Average	3	3	2	2	1	0	1	0	1	1	1	1	3	2

Unit	Main Top	oics	Course Outlines	Lecture
				(s)
Ι	Conduction	heat	Modes of heat transfer, Steady state unidirectional heat transfer with	12
	transfer		and without internal heat generation through slab, cylinder, spheres	
			and composite geometries; insulation and its purposes, critical	
			thickness of insulation for cylinders and spheres, Unsteady state	
			heat transfer in simple geometry; Use of Heisler charts, Gaussian	
			error function to solve transient heat transfer problems.	
	Convection	Heat	Natural and forced convection, dimensional analysis for free and	5
	Transfer		forced convection, dimensionless numbers used in convective heat	
			transfer, important correlations for free and forced convection	
	Boiling	and	Boiling phenomenon, hysteresis in boiling curve, nucleate and	5
	condensation		forced convection boiling; condensation phenomenon,	
			condensation on vertical surface, outside a tube and inside	
			horizontal tube.	
II	Radiation	heat	Characteristics of black, grey and real bodies in relation to thermal	5
	transfer		radiation, Stefan Boltzmann law; Kirchhoff's law; Wein	
			displacement law, Emissive power for a black body and real body,	
			intensity of radiation, radiation between two bodies.	
	Heat Exchange	ger	Classification, overall heat transfer coefficient, fouling factors, log-	5
			mean temperature difference for parallel and counter flow heat	

	exchangers, effectiveness of parallel and counter flow heat	
	exchanger by NTU method, Design of shell and tube heat	
	exchanger.	
Mass Transfer	Introduction to mass transfer, different modes of mass transfer,	12
	Mass flux and molar flux for a binary system, Fick's law of	
	diffusion of mass transfer, Derivation of general diffusion mass	
	transfer equation, Molecular diffusion in gases, liquids and solids	
	having steady state equimolar counter diffusion and through non	
	diffusing body; Steady state equimolar counter diffusion,	
	convective mass transfer coefficient, natural and forced convective	
	mass transfer, dimensional analysis for free and forced convective	
	mass transfer, important correlations of convective mass transfer;	
	permeability of films and laminates. Unsteady state diffusion in	
	slabs, cylinders and spheres, transient mass transfer in semi-infinite	
	medium.	

Author	Title
1. Arora & D'kundwar	A course in Heat and Mass Transfer
2. R.C. Sachdeva	Fundamentals of Engineering Heat & Mass Transfer
3. D.S. Kumar	Heat and Mass Transfer
4. R K Rajput	Heat and Mass Transfer
5. K A Gavhane	Unit Operations-II

Title of the course : **Heat and Mass Transfer Lab**

Subject Code : PCFT - 514

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Objectives: Objective of this course is to impart knowledge about

- The theory of heat transfer mechanisms during the heating/cooling of bio-materials.
- The concepts of unsteady heat transfer for determination of process time and temperature profiles in various geometries of the biomaterials.
- Designing calculations for various types of heat exchangers and their comparison in terms of effectiveness.
- The concepts of steady and unsteady mass transfer operations in practical form.

Course Outcomes:

CO1	Demonstrate the different modes of modes of heat transfer in various	Applying
	processing operations.	
CO2	Experiment to calculate various parameter in steady state heat transfer,	Analyzing
CO3	Demonstrate to the examine rate of heat transfer and effectiveness for the various heat transferring equipments like heat exchangers, HTST pasteurizer etc	Applying
CO4	Experiment the application of mass transfer in various processing operations	Analyzing
CO5	Conclude the findings of experiments	Analyzing

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)										Spe Outc	gram cific omes SO)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	3	1	1	1	1	1	1	2	3	3
CO2	3	3	3	2	3	1	1	0	1	1	1	2	3	3
CO3	3	3	3	2	3	1	1	0	1	1	2	3	3	3
CO4	3	3	3	2	3	1	1	0	1	1	1	2	3	3
CO5	3	3	3	2	3	1	1	2	1	1	2	2	3	3
Average	3	3	3	2	3	1	1	0.6	1	1	1.4	2.2	3	3

List of Practicals:

- 1. To find the thermal diffusivity of a food material during heat/cooling.
- 2. To find out the Overall heat transfer co-efficient for a viscous food material assuming negligible internal thermal resistance (lumped heat capacity system).
- 3. To find out the temperature profile and rate of heat transfer from a rectangular/cylindrical/spherical body loosing heat to the surrounding by use of Heisler and correction factor chart.
- 4. To calculate the surface and centre temperature of a rectangular/cylindrical/spherical body loosing heat to the surrounding by use of Heisler and correction factor chart.
- 5. To determine surface heat transfer coefficient for a vertical tube losing heat by free convection.
- 6. To determine surface heat transfer coefficient for pipe losing heat by forced convection.
- 7. Determination of overall heat transfer coefficients for unsteady state heating process
- 8. To determine LMTD, rate of heat transfer and effectiveness by NTU method for parallel flow double pipe heat exchanger.
- 9. To determine LMTD, rate of heat transfer and effectiveness by NTU method for counter current flow double pipe heat exchanger.
- 10. To determine the moisture diffusivity and activation energy for different geometries of food materials having rectangular/cubical/cylindrical/spherical geometry.
- 11. To study the behaviour of boiling curve
- 12. To study the mechanism of mass flux during the film-wise and drop-wise condensation.

Title of the course : Food Chemistry and Microbiology Lab

Subject Code : PCFT - 515

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Objectives: Objective of this course is to impart knowledge about

- The chemistry underlying the properties and reactions of various food components.
- Principle working of food analytical and food microbiological equipments.
- The different analytical and microbiology techniques related to food testing and control
- The experimental handling of techniques of food quality and analysis on the basis of chemical and microbiological methods.

Course Outcomes:

On successful completion of the subject, the students will be able to

CO1	Handle the equipment independently	Applying
CO2	Learn principles behind analytical techniques associated with food.	Applying
CO3	Learn the techniques of microbiological study and culturing	Applying
CO4	Obtain knowledge about the various methods of analysis for food	Applying
CO5	Check the microbial load of food samples, learn to access the quality	Applying
	standard of food samples	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs		Programme Outcomes (POs)										Spec Outco	gram cific omes SO)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	0	2	0	1	0	0	1	2	1	1	3	3	3	2
CO2	1	3	1	1	3	1	1	2	3	1	1	2	3	2
CO3	2	0	3	1	2	2	3	3	2	1	3	0	3	2
CO4	0	2	1	2	3	2	2	1	1	1	2	3	3	3
CO5	2	0	2	0	0	2	0	2	2	1	1	2	3	3
Average	1	1.4	1.4	1	1.4	1.4	1.4	2	1.8	1	2	2	3	2.4

List of Practicals:

- 1. To study the working of various equipments related to food chemistry and microbiology.
- 2. Qualitative estimation of carbohydrates in the given food sample.
- 3. Study of browning reaction and inhibition of browning reaction.
- 4. Determination of acid value, RM value and Polenske value of given oil or fat sample.
- 5. Estimation of amount of fat in the given food samples.
- 6. Estimation and study of protein by Kjeldhal, electrophoresis methods.
- 7. Estimation of pectic substances and pectin in fruit.
- 8. Determination of vitamins in foods.
- 9. To perform Gram staining technique of bacteria.
- 10. To measure the size of given microbial cell using micrometery.
- 11. To enumerate total viable count in a culture.
- 12. To study the growth curve of microorganisms.
- 13. To isolate pure culture using different techniques.
- 14. Quantitative analysis of food sample by standard plate count (SPC) method.
- 15. To study quality of milk by methylene blue reduction (MBRT) test.
- 16. To perform presumptive test for coliforms in milk.

Title of the course : **Biology for Engineers**

Subject Code : BSBL - 501

L	T	P	Credits	Weekly Load
2	0	0	2	2

Course Objectives: Objective of this course is to impart knowledge about

- 1. The basic organization of organisms and subsequent building to a living being.
- 2. The machinery of the cell functions that is ultimately responsible for various daily activities.
- 3. The application of engineering principles in biology.
- 4. Biological problems that requires engineering expertise to solve them.

Course Outcomes:

CO1	Explain biological engineering principles, procedures needed	Understanding
	to solve real-world problems.	
CO2	Explain the fundamentals of living things, their classification,	Understanding
	cell structure and biochemical constituents.	
CO3	Comprehend genetics and the immune system and learn the	Understanding
	techniques of microbiology study, food spoilage and	
	preservation.	
CO4	Classify the biomolecules as building blocks of biological	Applying
	subjects.	
CO5	Define the role of enzymes in biological system and identify	Understanding
	the application of enzymes in different food industry	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)										Spe Outc	gram cific omes SO)		
	РО	РО	РО	РО	РО	РО	РО	РО	PO	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	2	2	1	0	1	0	2	0	2	0	1	1	2	1
CO2	1	3	2	2	0	2	0	0	0	2	1	0	1	0
CO3	1	1	3	2	1	1	2	2	2	2	0	2	0	0
CO4	0	2	0	2	0	2	3	2	2	0	1	1	1	1
CO5	0	0	0	2	0	1	2	2	2	0	0	0	0	0
Averag e	0.8	0.8												

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Importance of biology in engineering, development of technological subjects imitating nature's biological entity, major discoveries in biology,	2
		economic aspects of biology in exploitation.	
	Classification	Concept of scientific classification of living entity, discuss the classification (with suitable example) based on: (a) cellularity- unicellular and multicellular (b) ultrastructure- prokaryotes and eukaryotes (c) energy and carbon utilization- autotrophs, heterotrophs and lithotrophs (d) ammonia excretion-aminotelic, uricotelic and ureotelic (e) molecular taxonomy- three major kingdoms of life, classification of microorganisms based on: (a) temperature (b) salt concentration (c) oxygen requirement	3
	Genetics	Concept of genetics, Mendel's laws, segregation and independent assortment, allele, meosis and mitosis, recessiveness and dominance, how genetic material	4

		passes from parent to offspring, difference between	
		phenotypic and genotypic characteristics, DNA	
		fingerprinting, exploitation of genetics in crop	
		improvement and microbial potential towards	
		fermentation/ fermented product.	
	Microbiology	Microorganisms, classification of microorganisms,	3
		techniques such as serial dilution, pour plating,	
		streak plating, spread plating, nutrient agar and broth.	
		Techniques for enumeration of bacteria, growth	
		kinetics, concept of food spoilage and preservation	
		technique.	
II	Biomolecules	Biomolecules as building blocks of biological	4
		subjects, introductory information about	
		carbohydrates, proteins, nucleotides, and	
		DNA/RNA, structure of protein (primary, secondary,	
		tertiary, quaternary), structure of selected	
		monosaccharides (glucose, fructose), disaccharides	
		(sucrose, maltose) and polysaccharides (starch,	
		cellulose).	
	Enzymes	Enzyme, enzymology, role of enzymes in biological	4
		system, mechanism of enzymatic action, role of	
		prosthetic group, co-factor and co-enzymes in	
		enzymatic reactions, classification of enzymes,	
		application of enzymes in: (a) juice clarification (b)	
		meat tenderization (c) enzymatic browning.	
	Metabolism	Concept of thermodynamics and application in	4
		biological system, photosynthesis, glycolysis, Krebs	
		cycle, exothermic and endothermic reactions,	
		endergonic and exergonic reactions.	

Author Title

1. Neil A. Campbell Biology: A global approach

2. Eric E Conn Outlines of biochemistry

3. Prescott Microbiology

4. Gunther S. Stent Molecular genetics

Title of the course : Food Biotechnology

Subject Code : PCFT - 522

L	T	P	Credits	Weekly Load
4	0	0	4	4

Course Objectives: Objective of this course is to impart knowledge about

- The basic understanding about food biotechnology and its applications.
- The microbial production of the different food products.
- The fundamentals of gene cloning techniques and its applications.
- The different wastes generated from the food industry and its treatment.

Course Outcomes: On successful completion of the subject, the students will be able to

Describe the importance of biotechnology in food technology and	Understanding
microbial production of Single cell Protein	
Discuss the microbial production of organic Acids, vitamins, and	Understanding
biopigments	
Explain about various enzyme, purification and their application in	Applying
food industry	
Discuss about basics and terms related to Plant tissue culture,	Understanding
Genetic Engineering and Genetically modified food.	
Describe the biotechnological methods used in food industry waste	Understanding
management.	
	microbial production of Single cell Protein Discuss the microbial production of organic Acids, vitamins, and biopigments Explain about various enzyme, purification and their application in food industry Discuss about basics and terms related to Plant tissue culture, Genetic Engineering and Genetically modified food. Describe the biotechnological methods used in food industry waste

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Prog Spec Outc (PS	cific			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	2	1	1	2	1	0	1	1	2	3	3
CO2	3	3	3	2	2	1	0	0	1	1	3	2	3	2
CO3	2	3	3	1	1	2	3	0	0	1	2	2	3	2
CO4	3	3	3	3	2	1	1	0	2	1	1	2	2	2
CO5	2	3	3	1	2	2	3	1	0	1	3	2	2	2
Average	2.6	2.8	3	1.8	1.6	1.4	1.8	0.4	0.6	1	2	2	2.6	2.2

Unit	Main Topic	Course Outlines	Lecture (s)
I	Introduction	History, scope and present status of biotechnology in India	5
		in relation to food technology and its general applications.	
	Microbial	Single cell proteins, microorganisms involved, raw	6
	production of	materials, advantages, materials, commonly used methods	
	SCP	with special reference to substrates and optimum	
		conditions for growth of microorganism, safety concerns	
	Microbial	Biotechnological methods for the production of organic	5
	production of	acids, vitamins and biopigments, with special reference to	
	organic Acids,	the microorganisms involved, substrates used, optimum	
	vitamins, and	process parameters and their applications	
	biopigments		
	Enzyme in	Sources of enzymes, advantages of microbial enzymes,	6
	food	production, extraction and purification of enzymes,	
	technology	applications of enzymes in food industry.	
II	Plant Tissue	Definition, cellular totipotency, somatic hybridization,	6
	culture	protoplast fusion, applications in agriculture.	
	Genetic	Gene cloning procedures-general outline, recombinant	8
	engineering &	DNA technology, different vectors involved plasmids,	
	GM Foods		

	cosmids & phagemids, transfer of recombinant molecules	
	into host organisms, genetically modified foods.	
Bio-	Biochemical oxygen demand, chemical oxygen demand,	6
management of	aerobic and anaerobic methods for treatment of food	
Food Industry	industry wastes with special reference to methanogenesis.	
Waste	BIS standards for safer disposal of industrial waste water	
	Total=	42

Author	Title
1. PS Panesar, SS Marwaha	Biotechnology in Agriculture & Food Processing
2. P.K. Gupta	Biotechnology
3. PS Panesar, SS Marwaha, HK Chopra	Enzymes in Food Processing
4. SS Marwaha	Food Processing: Biotechnological Applications
5. Crueger and Crueger	Biotechnology

Title of the course : Food Engineering

Subject Code : PCFT - 523

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Objectives: Objective of this course is to impart knowledge about

- The concept of SI system and the conversion from one system to another.
- Application of the fluid flow, heat and mass transfer principles to analyze and design food processes
- The theory and application of basic engineering operations.
- Engineering principles and practical applications of food processing techniques useful for increase shelf life of food products

Course Outcomes:

CO1	Apply the principles of mass and energy balance to food	Applying						
	processing systems.							
CO2	Determine thermal processing time for pasteurization /	Applying						
	sterilization.							
CO3	Interpret psychometric charts to determine seven properties of air	Applying						
	and its applications in drying, humidification, etc operations.							
CO4	Explain types, construction, designs and working principle of	Understanding						
	evaporators.							
CO5	Determine the freezing time of food and discuss different types of	Applying						
	freezer.							

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Spe Outc	gram cific omes SO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	3	2	1	0	0	1	3	2	3	3
CO2	3	3	3	2	1	1	1	0	0	1	1	2	3	3
CO3	3	3	1	3	2	2	1	0	0	1	1	1	3	3
CO4	3	3	3	1	3	1	1	0	0	1	1	2	3	3
CO5	2	3	3	3	3	1	2	0	0	1	1	1	3	3
Average	2.8	3	2.4	2.2	2.4	1.4	1.2	0	0	1	1.4	1.6	3	3

Unit	Main Topic	Course Outlines	Lecture (s)
I	Units and	Fundamental and derived units; Systems of units,	3
	conversions	Conversions from other systems to SI system. Numerical	
		problem	
	Material balance	Introduction to material balance, Numerical problems on	5
		material balance related to food processing	
	Energy balance	Introduction to energy balance, Steam properties, Use of	5
		Steam tables, Numerical problems on material and energy	
		balance related to food processing	
	Thermal	Target microorganism for thermal processing, Concept of D,	7
	Processing	F and Z value, Microbial inactivation; Derivation and	
		application of equation for determination of thermal process	
		time for cans, evaluation of thermal process time for batch	
		sterilization by graphical method; calculation of process time	
		for continuous sterilization of liquid foods; factors affecting	
		rate of heat penetration; effect of can size on sterility	
		requirement; related numerical problems, concept of	
		activation energy, concept of Q value, Application of Q rule	
		for Estimation of shelf life, amount of change and	
		Accelerated Storage Study.	

II	Psychrometry	Properties of air- water vapour mixture, psychometric chart,	4
		Humidification and dehumidification operations,	
		Application of psychrometry to drying; related numerical	
		problems.	
	Drying	Principles of drying and dehydration, water activity, sorption	5
		and desorption isotherms, rates of drying: constant and	
		falling rate periods during convective drying, drying rate	
		constant; capillary flow and diffusion in falling rate period;	
		determination of moisture diffusivity for various geometries	
		of food materials; freeze drying and spray drying;	
		calculations of freeze drying and spray drying times; related	
		numerical problems	
-	Evaporation	Boiling point elevation, Duhring rule, basic principles of	5
		evaporators; capacity and economy of evaporator; multiple	
		effect evaporator: operation and various feeding systems,	
		calculation of heat transfer area in single and multiple effect	
		evaporators; Thermal vapour recompression and Mechanical	
		vapour recompression system to improve evaporator	
		economy; related numerical problems	
	Food Freezing	Basic concepts, theories of crystallization; Depression in	5
		freezing point, Planks equation and other modified equations	
		for prediction of freezing time, freezing time calculations for	
		a product having uniform temperature (negligible internal	
		resistance), different types of freezers.	
		Total=	39

Author Title

1. R.T. Toledo Fundamentals of food process Engineering

2. Brennan and Cowell Food Engineering Operations

3. Heldman and Singh Food Process Engineering

4. Smith P.G. Intro to Food Process Engineering

5. Geankoplis Transport Process & Unit operations

Title of the course : Food Engineering Lab

Subject Code : PCFT - 524

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Objectives: Objective of this course is to impart knowledge about

- Applications of fundamentals of food engineering operations
- The practical application of processes involving simultaneous heat and mass transfer operations.
- The concepts involved in the preservation of food materials by the application of heat, cooling, freezing operations.
- The concepts involved in the design of apparatus meant for preservation of food by concentration like evaporators, multiple effect evaporators, spray dryer, drum dryer etc.

Course Outcomes:

CO1	Demonstrate the thermal process time and freezing time	Applying
	calculation of a given food material.	
CO2	Experiment to determine air properties after drying and air	Analyzing
	conditioning.	
CO3	Examine the drying and dehydration behavior of different bio-	Applying
	materials with different geometries.	
CO4	Determine various characteristics Thermal processing, Freezing,	Analyzing
	Evaporation, drying and dehydration.	
CO5	Conclude experiment result and present clearly through reports.	Analyzing

	CO/PO Mapping													
	(1	No corre	elation (0) / Wea	ak (1) / l	Medium	(2) / St	rong (3)	indicate	s strengt	h of corre	elation)		
COs	Programme Outcomes (POs)									Outc	gram cific omes SO)			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2							PSO2						
CO1	3	3	3	2	3	1	1	1	1	1	1	2	3	3
CO2	3	3	3	2	3	1	1	0	1	1	1	2	3	3
CO3	3	3	3	2	3	1	1	0	1	1	2	3	3	3
CO4	3 3 3 2 3 1 1 0 1 1 1 2 3								3	3				
CO5	3 3 3 2 3 1 1 2 1 1 2 2									3	3			
Average	3	3	3	2	3	1	1	0.6	1	1	1.4	2.2	3	3

List of Practicals:

- 1. To find out the D.F.Z value for a heating process meant for inactivation of microorganisms.
- 2. Calculation of thermal process time by formula method
- 3. Calculation of thermal process time by graphical method
- 4. Determination of steam properties using Mollier diagram
- 5. Determination of steam properties using steam tables
- 6. Determination of Boiling point elevation
- 7. Design of multiple effect evaporator
- 8. Determination of relative humidity and other thermodynamic properties of air using psychrometric chart
- 9. Study the drying characteristics of a food material during convective dehydration
- 10. Determination of moisture diffusivity of a food material during dehydration.
- 11. Determination of activation energy for dehydration of a food sample.
- 12. Comparison of freeze drying time determined by experiment and from modified Plank's equation
- 13. Determination of freezing point depression of a food material.
- 14. Study of freezing curve for pure water and a food material.
- 15. Determination of the freezing time for a given food sample using Heislier charts or unsteady state heat transfer solutions

Title of the course : Food Biochemistry and Nutrition and Biotechnology Lab

Subject Code : PCFT - 525

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Objectives: Objective of this course is to impart knowledge about

- The understanding about the basic equipments used in biotechnology lab.
- The growth pattern of the microorganisms and microbial production of the different products.
- The nutritional components of food.
- The determination of pollution load of food industry waste.

Course Outcomes:

CO1	Competent in handling the equipments single handily.	Applying
CO2	Demonstrate preparation of culture and microbial production of	Analyzing
	Enzymes, Ethanol, organic acid etc	
CO3	Estimate the bio constituent of food such as protein, ascorbic acid,	Analyzing
	protein etc	
CO4	Determine nutritive value and calorific value of any food and BOD	Analyzing
	& COD value of given sample	
CO5	Conclude the result of experiments and present clearly through	Analyzing
	reports,	

Mapping of Course Outcome versus Program Outcome

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Prog Spec Outc (PS	cific			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2							PSO2						
CO1	3	2	2	1	1	1	1	0	1	1	0	2	3	3
CO2	3	2	2	1	2	1	1	0	1	1	0	2	3	3
CO3	3	2	2	1	1	1	1	0	1	1	0	2	3	3
CO4	3	3 2 2 1 1 1 1 0 1 1 0 2 3 3									3			
CO5	3	3 2 2 1 1 1 1 0 1 1 0 2 3									3			
Average	3	2	2	1	1.2	1	1	0	1	1	0	2	3	3

List of Practicals

- 1. To study different equipments related to biotechnology.
- 2. Preparation of various media for culturing of microbes.
- 3. To study the effect of pH on the growth of microorganisms.
- 4. To study the production of an enzyme by given organism.
- 5. To study the disruption of cells using mechanical method.
- 6. Estimation of enzymatic activity of given enzyme.
- 7. To study the production of ethanol by given organism.
- 8. Microbial production of organic acid.
- 9. Estimation of total sugars and reducing sugars in a given food sample.
- 10. Estimation of ascorbic acid in a given food sample.
- 11. Estimation of protein by Lowry method.
- 12. Estimation of phosphatase activity in a milk sample.
- 13. Estimation of nutritive value of given food sample.
- 14. Estimation of calorific value by Bomb calorimeter.
- 15. To determine Biochemical Oxygen Demand of a given sample.
- 16. To determine Chemical Oxygen Demand of a given sample.

Title of the course : **Technology of Animal Products**

Subject Code : PCFT - 611

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- The important biochemical and ultra structural changes that take place post-mortem during conversion of muscle to meat.
- The factors that affect the safety and quality of meat products.
- The technological and commercial issues related to the processing of meat, egg and fish.
- The manufacture, handling and storage of fish and meat and products thereof assess safety and quality requirements for fish and meat products.

Course Outcomes:

CO1	Describe the role of various compositional components in the	Understanding
	development of various meat, poultry and fish products.	
CO2	Discuss slaughter techniques and hygienic handling of raw meat	Understanding
CO3	Use the knowledge to develop various value-added meat products.	Applying
CO4	Explain various formulations and processing procedures to	Understanding
	produce quality product.	
CO5	Discuss about the various food standards in relation to meat, fish	Understanding
	and poultry.	

	CO/PO Mapping													
	(No corre	elation (0) / Wea	ak (1) / l	Medium	(2) / St	rong (3)	indicate	s strengt	h of corre	elation)		
COs	Programme Outcomes (POs)									Spec Outc	gram cific omes SO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	3	1	1	1	3	2	1	1	2	3	3
CO2	1	2	2	3	0	1	1	2	1	1	3	2	1	3
CO3	3	1	1	2	2	3	1	1	0	1	3	1	2	3
CO4	0	0 2 2 3 0 1 1 1 2 1 1 2 2 2								2				
CO5	1	1 3 3 2 1 0 0 1 1 2 2 2 2									3			
Average	1.4	2	2.2	2.6	0.8	1.2	0.8	1.6	1.2	1.2	2	1.8	2	2.8

Unit	Main Topic	Detailed Contents	Lectures
I	Structure and	Muscle tissue, skeletal muscle, skeletal muscle fiber,	8
	Composition of	myofibrils, myofilaments, smooth muscle, cardiac muscle,	
	Muscle and	epithelial tissue, nervous tissue. Connective tissues.	
	associated tissue	Connective tissue proper, adipose tissue. Muscle bundles and	
		associated connective tissues. Muscle and fiber types.	
		Chemical composition of skeletal muscle.	
	Conversion of	Homeostasis, Exsanguination, circulatory failure to muscle,	7
	muscle to meat	postmortem pH decline, rigor mortis, Enzymatic	
		degradation.	
	Properties of	Water holding capacity, chemical basis of water holding	6
	fresh meat	capacity, color, pigments. Chemical state of pigments.	
II	Principles of	Curing, meat curing ingredients, methods for incorporation	7
	meat processing	of cure ingredients, chemistry of cured color, Smoking of	
		meat, comminution, blending and emulsification.	
		Technology of sausages.	
	Slaughtering	Various slaughtering techniques in large animals. By	4
	Techniques, Cuts	products of meat industry.	
	and by products		

Poultry dro	Stunning, bleeding, scalding, evisceration, packaging and	6
and egg	storage. Structure, composition and nutritive value of an egg.	
processing	Functional properties of egg constituents, Interior quality of	
	eggs and its preservation, Egg products.	
Fish proces	sing Selection of raw material for processing of streaking and	8
	filleting of fish; production of fish paste, fish oils, sauce, fish	
	protein concentrates. By products of fish processing industry.	
	Total=	46

Author	Title
1. J.C. Forest, E.D. Aberle,	H.B. Hedrick Principles of meat science
2. B. Panda	Principles of meat science
3. Robert L. Henrickson	Meat, Poultry and Seafood Technology

Title of the course : Dairy Technology

Subject Code : PCFT - 612

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- Milk composition and its various properties and different adulterants.
- Working of equipment and process technology for various milk products.
- Process technology for milk powder and fermented milk products
- Cleaning and sanitation of dairy industry.

Course Outcomes:

CO1	Discuss about current status of dairy industry in India and	Understanding
	composition & properties of milk.	
CO2	Implement the technology of fluid milk and manufacturing fat rich	Applying
	milk-based products.	
CO3	Interpret the technological aspects in manufacturing of frozen,	Applying
	concentrated and dried milk products.	
CO4	Use the technology to manufacture the fermented milk based and	Applying
	indigenous products.	
CO5	Explain the cleaning & sanitization procedures and working	Understanding
	principles of related operations and equipments.	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs		Programme Outcomes (POs)										Spe Outc	gram cific omes SO)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	3	1	2	2	1	0	1	1	2	3	2
CO2	3	2	2	3	3	3	2	0	1	2	2	1	2	1
CO3	3	3	2	3	3	2	1	1	0	1	2	1	3	3
CO4	3	1	3	2	1	3	0	1	0	1	2	2	3	2
CO5	2	3	2	2	3	3	2	1	1	2	2	2	3	3
Average	2.6	2	2	2.6	2.2	2.6	1.4	0.8	0.4	1.4	1.8	1.6	2.8	2.2

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Status of dairy industries in India, Milk and Types of Milk,	3
		Factors affecting composition, quality and yield of milk,	
		Adulterations in milk and its detection.	
	Dairy Chemistry	Composition and milk properties, Roles of lipids, proteins,	4
	& Microbiology:	carbohydrates, minerals, vitamins and enzymes, importance	
		of psychrophilic, mesophilic and thermophilic spoilage	
		organisms in storage, pasteurization and sterilization.	
	Cream	Principles of cream separation, equipment, effectiveness,	6
	Separation and	Cream and its types, pasteurization.	
	Homogenization	Homogenizers: principle of operation, technology of	
		homogenized milk production.	
	Pasteurization	Process and equipment for milk pasteurization, direct and	6
	and Sterilization	indirect sterilization; Ultra - High - Temperature (UHT)	
		sterilization. Fouling of pasteurizers and sterilizers. Aseptic	
		packaging. Technology and standards of commercial liquid	
		milk products: toned, double toned products, flavoured,	
		reconstituted, recombined milk etc.	
II	Concentration,	Process and equipment for evaporation and concentration of	7
	Evaporation,	liquid milk, spray drying of liquid milk, energy consumption	
		in spray drying, instantization methods, cyclone separation	

drying and	principle. Technology and standards of dried and condensed	
freezing	milk products.	
	Process and equipment for Ice-cream, Partial freezing, final	
	freezing and hardening, freezing time calculation.	
Dairy Products	Process Technology and standards of manufacturing of	7
Manufacturing	butter, butter oil/ghee, cheese, malted milk drinks, infant	
	foods, fermented milk, traditional Indian dairy products and	
	other milk products (casein, whey proteins, lactose etc.).	
Cleaning and	Selection and use of dairy cleaners and sanitizers, Cleaning	3
sanitation	and sanitization of dairy equipment and plant, clean in place	
	system	
	Total=	36

Autho	r	Title
1.	Su Kumar De	Outlines of Dairy Technology
2.	Marth and Eteele	Applied Dairy Microbiology
3.	Walstra	Dairy Technology
4.	Spreer	Milk and Dairy Product Technology
5.	Eckles, Comb and Macy	Milk and Milk Products
6.	Kessler	Food Engineering and Dairy technology
7.	Hui	Dairy Science and Technology Handbook

Title of the course : Animal Product and Dairy Technology Lab

Subject Code : PCFT - 613

L	T	P	Credits	Weekly Load
0	0	2	2	4

Course Objectives: Objective of this course is to impart knowledge about

- The different in structure of various animal tissues
- The various physico-chemical, platform test of milk, and analysing the milk and meat products for their quality.
- Various unit operation / working of different milk and meat processing equipments.
- Preparation of various milk and meat products.

Course Outcomes:

CO1	Estimate various physico-chemical properties of milk and meat.	Applying
CO2	Estimate the platform test of milk to judge the milk quality at	Applying
	reception	
CO3	Handle various equipments involved in milk and meat processing	Applying
	and develop products	
CO4	Examine effect of processing on quality of milk and meat product	Analyzing
CO5	Conclude the experimental result and present clearly through	Analyzing
	reports	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs		Programme Outcomes (POs)										Spe Outc	gram cific omes SO)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	1	1	0	1	1	1	2	3	3
CO2	3	2	2	1	2	1	1	0	1	1	1	2	3	3
CO3	3	2	2	1	1	1	1	0	1	1	1	2	3	3
CO4	3	2	2	1	1	1	1	0	1	1	1	2	3	3
CO5	3 2 2 1 1 1 1 0 1 1 2							3	3					
Average	3	2	2	1	1.2	1	1	0	1	1	1	2	3	3

List of Practicals:

- To analyze milk sample for following parameters.
 Percent Acidity & pH, Specific gravity, Total solids & SNF, Fat, COB and Alcohol test.
- 2. Lactose determination in milk
- To study cream separation and maintenance of cream separator and functions of various parts
- 4. To study the effect of temperature and pressure on homogenization.
- 5. To observe the effect of pasteurization on milk quality
- 6. To analyze milk powder sample for various parameters.
- 7. To analyze condensed milk for various parameter.
- 8. To prepare paneer and to examine their quality parameters
- 9. Preparation of ice-cream.
- 10. To analyze the butter for its quality.
- 11. To study the effect of low and high oxygen atmosphere on meat colour.
- 12. To study the structure of the muscle under compound microscope.
- 13. Perform the slaughtering of the poultry birds.
- 14. Identification of different internal organs of poultry birds and their utilization for product preparation.
- 15. Dressing of Fish.
- 16. Determination of total volatile acids in fish products

Title of the course : Technology of Cereal, Pulses and Oilseeds Processing

Subject Code : PCFT-621

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Objectives: Objective of this course is to impart knowledge about

- Basic understanding of cereals, pulses and oilseeds after harvesting.
- Various types of processing methods of cereals, pulses and oilseeds
- various products and by-products of cereals, pulses and oilseeds
- Detailed manufacturing technologies of cereals, pulses and oilseeds consumed in daily life in food industries.

Course Outcomes:

CO 1	Understand the composition, structure and storage of food grains	Understanding
CO 2	Understand the technology of paddy processing and its products	Understanding
CO 3	Understand the traditional and modern milling operations of wheat and	Understanding
	technology of bakery and extruded products	
CO 4	Understand the processing of coarse cereals and legume-pulses and their	Understanding
	value-added products	
CO 5	Understand the processing of oil & oilseeds and utilization of their by-	Understanding
	products	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs		Programme Outcomes (POs)										Spec Outc	gram cific omes SO)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	3	1	1	1	1	3	2	1	1	2
CO2	3	2	3	3	3	3	1	1	0	1	2	2	1	2
CO3	2	1	1	1	3	3	1	0	1	3	1	1	1	3
CO4	2	1	1	1	3	3	3	1	0	1	1	3	3	1
CO5	3 1 2 1 2 0 3 0 1 3 2 3								3	1				
Average	2.6	1.4	1.8	1.4	2.8	2	1.8	0.6	0.6	2.2	1.6	2	1.8	1.8

Unit	Main Topics	Course outlines	Lecture
			(s)
Ι	Introduction	General introduction to cereals, pulses and oilseeds; Production and	6
		utilization trends of various cereals, pulses and oilseeds; Grain	
		classification, structure and composition;	
	Pulses	Anti-nutritional factors and methods of inactivation; pre-	8
		treatments; Traditional and modern milling methods and equipment	
		involved; Byproducts of pulse milling and their utilization	
	Wheat	Milling of wheat; Factors affecting yield and quality of flour; Flour	8
		treatments; Air-classification; Quality assessment of grain and	
		flour; Technology of Pasta products.	
II	Rice	Rice milling; milling machines; effect of different factors on	8
		milling yield and rice quality; Parboiling of paddy- different	
		methods of parboiling; Curing and aging of rice; Milled rice	
		products and by-products	
	Corn	Wet and dry milling of corn; Comparison of conventional and	6
		modern process for wet milling processes; Milling machines; Corn	
		flakes, syrups	

Oil extraction	Oil extraction methods: mechanical Pressing. Solvent extraction	8
and Refining	process: principle, pretreatment-breaking, cracking, flaking,	
of oils	extraction principle and Desolventization. Factors affecting the	
	extraction process, Refining of oils	
	Total=	48

Author	Title
1. Mathews, R.H. Ed. 1989.	Legumes: Chemistry, Technology and Human Nutrition
2. Hoseney RS.	Principles of Cereal Science and Technology
3. Kent NL.	Technology of Cereals
4. A. Chakraverty et. Al	Handbook of Post Harvest Technology
5. B.D. Shukla	Oil Seed Processing Technology

Title of the course : Technology of Fruits and Vegetable Products

Subject Code : PCFT - 622

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- Post-harvest changes in fruits and vegetables, causes of post-harvest losses of fruits and vegetables for effective handling and minimizing the post-harvest losses.
- The unit operations and calculations involved in the processed fruits and vegetable products
- The technology of processed fruits and vegetable products
- The problems involved in processed fruits and vegetable products line and able to solve the associated problems.

Course Outcomes:

CO1	Describe the physiological changes in fruits after harvesting	Understanding
CO2	Explain the factors affecting the shelf life of fresh fruits and vegetables	Understanding
CO3	Explain the role and importance of preservation techniques to improve	Understanding
	the shelf life of seasonal fruits	
CO4	Calculate the requirement of raw materials for processing of fruits and	Applying
	vegetables	
CO5	Discuss the technology behind processing of fruits and vegetable	Applying
	products	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)											Spe Outc	gram cific omes SO)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	3	3	1	1	2	2	1	3	1
CO2	3	2	3	3	1	3	1	0	1	2	1	2	3	2
CO3	3	1	1	3	1	2	1	1	0	1	2	2	2	3
CO4	2	3	3	2	3	3	1	1	3	1	2	1	1	3
CO5	3	1	1	3	2	2	1	0	0	1	2	1	1	3
Average	2.8	2	2.2	2.6	1.6	2.6	1.4	0.6	1	1.4	1.8	1.4	2	2.4

Theory

Unit	Main Topics	Course Outlines	Lecture (s)							
I	Introduction,	Status of production and processing of fruits and vegetables.	8							
	pre and post-	Structure and nutritional composition; pre and post-harvest								
	harvest	changes; pre-harvest factors affecting postharvest quality;								
	technology	desirable characteristics of fruits and vegetable for processing;								
		possible causes of post-harvest losses and conservation of fruits								
		and vegetable. Role of plants growth regulators in relation to								
		extension of storage life; physical and chemical treatment to								
		increase the shelf-life.								
	Preservation of	Respiration, transpiration, ripening, senescence, climacteric and	8							
	fresh fruits	non-climacteric fruits, preservation of fruits and vegetables								
	and vegetables	using low temperature preservation, use of novel packaging,								
		hypobaric storage, controlled and modified atmosphere								
		storages.								
II	Process	Unit operations and calculations involved in the processing of	8							
	calculation	fruits and vegetables to produce canned foods, dehydrated								
		foods, high sugar products, juices, concentrates, powders,								
		beverages, pickles and tomato products. Use of psychometrics,								
		steam table in calculation. Problems related to the								

	determination of selected active components from used	
	ingredient or preservatives.	
Process	Technology for the manufacturing of intermediate moisture	8
technolo	gy foods, jam, jelly, marmalade, preserve and candy; canning of	
	fruits and vegetables, tomato puree, paste, ketchup, sauce and	
	soup; pickles, drying/ dehydration of fruits and vegetables; fruit	
	Juices, pulps, concentrates, powders, squashes, cordials and RTS	
	beverages.	
	Critical points to consider in the production of different	
	processed fruits and vegetable products and solving the	
	associated problems.	
	Total=	45

Author Title

D. S. Smith, J. N. Cash and W K. Nip, Y.H. Hui Processing Vegetables: Science and Technology

S. Ranganna Handbook of Analysis and Quality Control for

Fruits and Vegetable Products

L. Somogyi Processing Fruits: Science and Technology, Vol. I,

Biology Principles and Applications

Y. H. Hui, S.Ghazala, D.M. Graham, Handbook of Vegetable

K.D. Murrell and W.K. Nip Preservation and Processing

D.M. Barrett, L. Somogyi Processing Fruits: Science and Technology

and H.S. Ramaswamy

Title of the course : Plant Foods Lab

Subject Code : PCFT - 623

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Objectives: Objective of this course is to impart knowledge about

- Basic understanding of fruits, vegetables, cereals, pulses and oilseeds
- Various analysis of fruits, vegetables, cereals, pulses and oilseeds
- Various products and by-products of fruits, vegetables, cereals, pulses and oilseeds
- Manufacturing technologies of fruits, vegetables, cereals, pulses and oilseeds consumed in daily life.

Course Outcomes:

CO1	Determine the physico-chemical properties cereal, pulses and oil	Applying
	seeds.	
CO2	Relate the pre-treatments used in pulse milling process to achieve	Analyzing
	high grade pulses.	
CO3	Demonstrate the fruit and vegetable-based products and their	Applying
	quality evaluation	
CO4	Relate experimental work to large scale production	Applying
CO5	Conclude the results and present clearly through reports.	Analysing

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)											Spe Outc	gram cific omes SO)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1	1	3	3	1	1	3	2	1	2	1
CO2	3	1	1	2	1	1	3	1	0	1	2	1	3	2
CO3	1	3	3	2	2	1	2	1	3	1	2	1	2	3
CO4	0	1	3	3	1	1	2	2	1	1	2	2	3	2
CO5	2	1	1	3	1	3	2	0	1	3	2	2	3	3
Average	1.6	1.8	2	2.2	1.2	1.8	2.4	1	1.2	1.8	2	1.4	2.6	2.2

List of Practical's:

- 1. Physical properties of pulses and oil seeds
- 2. Determination of dry and wet gluten of a given flour sample.
- 3. Determination of Hagberg's Falling number.
- 4. Determination of percentage impurities in grain by aspirator and seed blower.
- 5. Pretreatments for milling of pulses
 - a) Application of water
 - b) Application of oil
 - c) Application red earth slurry.
 - d) Application of steam
- 6. Preparation of noodles and its quality evaluation.
- 7. Solvent extraction of selected oilseeds.
- 8. Anatomy and structure of fruits and vegetables
- 9. Quantitative analysis of cut fruits and vegetable yield
- 10. Preparation of fruit and synthetic beverages
- 11. End point determination in preparation of high sugar product (Mixed fruit jam)
- 12. Effect of pre-treatment and process variables on quality of preserve/candied fruits
- 13. Comparison of juice/pulp extraction methods on quality and yield of tomato pulp, ketchup/Tomato soup
- 14. Canning and cut out analysis of fruit and vegetable
- 15. Dehydration and rehydration of common available vegetable
- 16. Visit to fruit, vegetable and cereal processing Industry

Title of the course : Food Analysis and Quality Control

Subject Code : PCFT - 711

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Objectives: Objective of this course is to impart knowledge about

- The quality, quality control and their applications in food industry.
- The instrumental aspects of color and texture measuring instruments.
- The non-destructive methods and various types of chromatographic methods applied as quality control.
- Various food standards and regulations in food industry as quality control.

Course Outcomes:

CO1	Discuss about the quality control and its significance in processing.	Understanding
CO2	Execute the knowledge of physical characteristics of food in food	Applying
	industries	
CO3	Explain the working principle of instruments which are used to	Understanding
	measure the physical characteristics of food such as Food Texture,	
	fruit pressure, color etc	
CO4	Describe principle and working of non-destructive techniques and	Understanding
	chromatographic techniques used for food analysis and quality	
	control.	
CO5	Execute the knowledge of food safety and standards, role of food	Applying
	regulations and their implementation in food industry	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs		Programme Outcomes (POs)										Spec Outc	gram cific omes SO)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	3	3	1	0	1	1	0	2	1	2	3	1
CO2	2	3	3	1	1	3	1	1	0	2	1	2	3	3
CO3	3	2	2	3	3	1	3	1	0	2	2	1	3	2
CO4	3	1	1	1	1	3	2	1	0	1	2	1	1	2
CO5	1	3	1	2	2	3	1	1	0	1	2	2	3	2
Average	2.2	2	2	2	1.6	2	1.6	1	0	1.6	1.6	1.6	2.6	2

Unit	Main Topic	Detailed Contents	Lectures
I	Introduction	Quality control and its importance; Functions of quality	4
		control department and quality control laboratories	
	Colour	Importance and need of colour determination; Methods of	9
		colour determination with Spectrophotometer, Colorimeter,	
		Hunter Colour lab, CIE system, Lovibond Tintometer,	
		Munsell colour and Colour difference meter, Disc	
		colorometry and their applications	
	Kinesthetics and	Food texture; Physical characteristics of food; Working of	6
	Texture	texture measuring instruments such as Texture Analyzer,	
		Instron Universal Testing machine, Fruit pressure tester,	
		Puncture tester, Succulometer, Tenderometer, Texturometer,	
		Maturometer and Fibrometer; Texture Profile Analysis	
		(TPA)	
II	Non-destructive	Near Infrared Spectroscopy (NIR); Nuclear Magnetic	9
	methods	Resonance (NMR) and its application; Ultrasonic	
		equipments; Conductivity and resistivity meters	
	Chromatography	Principle and working of Gas chromatography (GC); High	8
		Pressure Liquid Chromatography (HPLC); Types of	

	Total=	44
	Genetically Modified Foods (GMF)	
Regulations	ISO series; Good Manufacturing Practices (GMP);	
Food Safety and	Food Safety and Standards Act (2006); Codex Alimentarius;	8
	(TLC); Chromatographic methods applied as quality control	
	detectors used in GC and HPLC; Thin layer chromatography	

Author Title

1. Ronald S. Pearson's Composition and Analysis of foods

2. Ranganna Handbook of Analysis of Fruit and Vegetable and their Products

3. Pomeranz and Meloan Food Analysis

Title of the course : Packaging Technology

Subject Code : PCFT - 712

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- Functions of packaging and familiarize them with different types of food packaging materials and their properties.
- Theory of permeability and barrier properties of different food packaging materials.
- Different food packaging equipment and machinery.
- Selecting and finalizing different types of packaging materials based on the composition and requirements of foods.

Course Outcomes:

CO1	Describe the objectives, functions of packaging and select the	Understanding
	packaging material based on requirement and properties of	
	material.	
CO2	Discuss the manufacturing and characteristics of various	Understanding
	packaging materials viz paper, glass, metal, and plastic	
CO3	Predict shelf life of different food materials	Applying
CO4	Discuss the packaging equipment and machinery and packaging	Understanding
	systems for various types of food.	
CO5	Explain specialized techniques in food packaging such as Active,	Understanding
	aseptic, controlled & modified atmospheric packaging etc.	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Spe Outc	gram cific omes SO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	2	2	1	0	1	0	1	2	3	2	1
CO2	2	2	1	1	2	3	1	3	3	2	3	2	2	1
CO3	3	2	2	1	1	2	1	3	1	0	3	3	2	3
CO4	2	1	3	3	1	3	1	1	0	1	3	1	2	1
CO5	3	3	3	2	1	3	1	2	3	1	2	2	3	2
Average	2.6	2	2	1.8	1.4	2.4	0.8	2	1.4	1	2.6	2.2	2.2	1.6

Unit	Main Topic	Detailed Contents	Lectures
Ι	Introduction	Definitions; Objectives and functions of	4
		packaging and packaging materials.	
		Labeling types; Functions and	
		regulations.	
	Properties of	Packaging requirements and selection of	6
	Packaging Material	packaging materials; Properties of materials	
		such as tensile strength, bursting strength,	
		tearing resistance, puncture resistance, impact	
		strength, tear strength and their methods of	
		testing and evaluation	
	Packaging	(a) Paper: pulping; fibrillation and beating;	8
	materials	types of papers and their testing methods;	
		paper board	
		(b) Glass: composition; properties; types of	
		closures; methods of bottle making	
		(c) Metals: Tinplate containers; tinning	
		process; components of tinplate; tin free steel	
		(TFS); types of cans; aluminium containers;	
		lacquers	

		(d) Plastics: types of plastic films; laminated	
		plastic materials; coextrusion; edible films;	
		biodegradable plastics	
	Barrier properties	Theory of permeability; Factors affecting	6
	of packaging	permeability; Permeability coefficient; Gas	
	materials	transmission rate (GTR) and its measurement;	
		Water vapour transmission rate (WVTR) and	
		its measurement; Prediction of shelf life of	
		foods; Selection and design of packaging	
		material for different foods.	
II	Packaging	Vacuum packaging machine; Gas packaging	6
	equipment and	machine; Seal and shrink packaging machine;	
	machinery	Form-fill-seal machine; Bottling machines;	
		Carton making machines.	
	Food packaging	Different forms of packaging systems such as	8
	systems	rigid, semi-rigid, flexible forms and different	
		packaging system for (a) dehydrated foods (b)	
		frozen foods (c) dairy products (d) fresh fruits	
		and vegetables (e) meat, poultry and sea foods	
	Specialized	Active packaging system; Retortable	6
	techniques in food	pouches; Aseptic packaging; Controlled	
	packaging	and modified atmospheric packaging;	
		Irradiation in food packaging	
		Total=	40

Author Title

1. Frank A. Paine A Handbook of Food Packaging

2. Stanley Sacharow and Griffin Food Packaging

3. A.S. Athalye Plastics in Packaging

4. Gordon L. Robertson Food Packaging: Principles and Practice

Title of the course : Food Analysis, Quality Control and Packaging Technology Lab

Subject Code : PCFT - 713

L	T	P	Credits	Weekly Load
0	0	2	1	2

Course Objectives: Objective of this course is to impart knowledge about

- Carrying out proximate and physic-chemical analysis of different types of raw and processed foods.
- Different tests performed on packaging materials and filled packages.
- Calculating the shelf life of foods inside packaging materials and selection of suitable packaging materials.
- Different food packaging equipment and machinery.

Course Outcomes:

CO1	Determine the proximate composition of raw and processed foods	Analyzing
CO2	Demonstrate the estimation of different pigments, metals and other	Applying
	compounds present in foods.	
CO3	Use testing methodology to determine the characteristics of tin	Applying
	plates, aluminium, glass, paper and plastic used for making	
	packages.	
CO4	Explain the working and construction of different package filling	Understanding
	and testing machinery	
CO5	Conclude the data of experiments and present clearly in reports.	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Prog Spec Outc (PS	cific			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	3	1	1	1	1	1	1	2	3	3
CO2	3	3	3	2	3	1	1	1	1	1	1	2	3	3
CO3	3	3	3	2	3	1	1	1	1	1	2	3	3	3
CO4	3	3	3	2	3	1	1	1	1	1	1	2	3	3
CO5	3	3	3	2	3	1	1	1	1	1	2	2	3	3
Average	3	3	3	2	3	1	1	1	1	1	1.4	2.2	3	3

List of Practicals:

- 1. Determination of carotenoids in food sample.
- 2. Determination of colour value by using different methods.
- 3. Determination of ascorbic acid by titrimetric and photometric methods.
- 4. Determination of iron, phosphorous and sulphur in foods.
- 5. Determination of different pigments in food samples.
- 6. Analysis of canned and processed products available in the market.
- 7. Determination of FFA and acid value of given sample
- 8. To determine the bursting strength of a carton board.
- 9. To determine the amount of tin coating in a tin plate.
- 10. To determine Tensile strength and Young's Modulus of given material.
- 11. Testing of lacquered tin plate steel for following:
 - i) Continuity of tin layer
 - ii) Resistance of lacquer to acid.
- 12. Determination of iron content in canned foods.

Title of the course : **Separation Technology**

Subject Code : **OEFT - 611A**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- Basic understanding of the separation of various types of components for various systems.
- Familiarize the students with the separation of valuable components from the liquid, solid streams by contact equilibrium processes as well as distillation process
- Acquaint the students with theory and basis of powder technology and their classification.
- Familiar the students with new technologies of separation like super critical fluid extraction.

Course Outcomes:

CO1	Describe the basic of various separation techniques	Understanding
CO2	Demonstrate strong appreciation in applying the concepts and skills towards exploiting the separation techniques for diverse applications	Applying
CO3	Determine the number of plates in the rectifying section, stripping section of the continuous distillation system	Applying
CO4	Determine the optimum value of reflux ratio to achieve best quality product at minimum total cost in case of the continuous distillation system.	Applying
CO5	Describe the theoretical basics of powder technology	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)								Spe Outc	gram cific omes SO)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	3	1	0	1	1	2	1	3	1
CO2	3	3	3	2	2	3	1	1	0	1	1	1	3	2
CO3	3	2	2	3	3	3	1	1	0	1	2	1	3	3
CO4	3	1	1	3	3	1	1	1	1	1	2	2	2	3
CO5	3	3	2	2	3	2	1	0	0	1	3	2	3	1
Average	3	2.4	2	2.4	2.4	2.4	1	0.6	0.4	1	2	1.4	2.8	2

Unit	Main Topics	Course Outlines	Lecture (S)			
I	Introduction to	Introduction to various separation processes; Gas-Liquid,	8			
	various	Gas-Solid, Liquid-Liquid, Liquid-Solid separation; Concept				
	separation	of phase equilibrium, Stage equilibrium, Equilibrium				
	processes	concentration; Single stage contact equilibrium, counter-				
		current multiple contact stages, Determination of optimum				
		number of contact stages by analytical and graphical method;				
		Rate of extraction, Construction and working mechanism of				
		different extraction equipments like single stage extraction,				
		Multiple stage static bed system, Bollmann extractor,				
		Hildebrandt extractor, Rotocell extractor.				
	Solid Separation	Introduction, Concept of size, Shape, Cut-size, Sieving,	5			
	Process	Magnetic separation, Eddy-current separation, Wet				
		separation, Ballistic separation, Color separation.				
	Wet separation	tion Liquid-solid and liquid- liquid separation by hydroclones,				
	process	Surface velocity classifier, Elutriators, Impingement				
		separator, Electrostatic precipitation.				
II	Distillation	Introduction, boiling point diagram, differential or simple	6			
		distillation, Flash or equilibrium distillation, Continuous				
		rectification with and without reflux, Reflux ratio, Optimum				

	reflux ratio, Batch distillation, Application of distillation in food processing	
Powder Technology	Classification off powder, Separation of powder, Sieving, Effectiveness of screens, Fineness modulus, Air classification, Factors affecting air classification, Cyclone application, Air separation, Particle size distribution.	7
Super Critical Fluid Extraction	Introduction, Properties of SCF, Food application, Application of SCFE in analytical technique, Pharmaceutical application	4
	Total=	32

Author	Title			
1. Grandison AS & Lewis MJ	Separation Process in the Food &			
	Biotechnology Industries			
2. Narayanan CM & Bhattacharyya	Mechanical Operations for Chemical Engineers			
BC				
3. Dutta BK	Mass Transfer & Separation Process			

Title of the course : Biochemical Engineering

Subject Code : **OEFT-611B**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- The growth of the microorganisms in different culture systems.
- The media formulation and sterilization techniques used.
- The design and working of the bioreactor.
- The enzyme kinetics and methods of purification of microbial products.

Course Outcomes:

CO1	Describe the basic of various separation techniques	Understanding
CO2	Demonstrate strong appreciation in applying the concepts and	Applying
	skills towards exploiting the separation techniques for diverse	
	applications	
CO3	Determine the number of plates in the rectifying section, stripping	Applying
	section of the continuous distillation system	
CO4	Determine the optimum value of reflux ratio to achieve best quality	Applying
	product at minimum total cost in case of the continuous distillation	
	system.	
CO5	Describe the theoretical basics of powder technology	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)								Spe Outc	gram cific omes SO)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	2	1	1	1	0	1	2	2	2	3	2
CO2	3	3	3	3	1	3	2	0	1	1	2	1	3	2
CO3	3	1	3	1	3	3	1	3	3	3	2	1	2	3
CO4	3	3	2	3	3	3	1	1	0	1	2	1	3	3
CO5	3	3	1	2	2	3	1	0	0	2	1	2	3	2
Average	3	2.4	2.4	2.2	2	2.6	1.2	0.8	1	1.8	1.8	1.4	2.8	2.4

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Introduction to biochemical engineering, its scope and area	2
		covered, Microbiological and biochemical aspects related	
		to biological processes	
	Media	Medium formulation, Thermal sterilization, Sterilization	6
	sterilization	by filtration, Design criteria and design equations for	
		sterilization process, Temperature-time profile and design	
		calculations, Methods of air sterilization, Interception,	
		diffusion and combined mechanism	
	Microbial	Microbial growth kinetics under batch and continuous	12
	growth and	process, Thermal death kinetics of microorganism,	
	death kinetics	measuring and monitoring growth processes, influence of	
		temperature on specific growth and death rates,	
		relationship between growth and substrate utilization.	
II	Enzyme	Concepts of free energy and activation energy, simple	12
	kinetics	enzyme reaction kinetics, complex enzyme kinetics,	
		Michaelis-Menten equation, Briggs-Halden approach,	
		evaluation of parameters, enzyme inhibition (competitive	
		and non-competitive), Methods of enzyme immobilization.	

Bioreactor &	Bioreactor design and analysis in view of microbial	12
its control	reaction process, operation of batch and continuous	
system	fermentation system, oxygen supply and demand in	
	microbial processes, mass transfer resistances, critical	
	value of oxygen concentration and oxygen uptake rate,	
	aeration system in fermenter, types and design of sparger.	
	Total=	44

Author	Title
1. Aiba S, Humphrey A.E. and Millis N.	Biochemical Engineering
2. Bailey J.E and Ollis D.F.	Biochemical Engineering Fundamentals
3. James M. Lee	Biochemical Engineering

4. Stanbury P.F, Whitaker A., Hall S.J Principles of Fermentation Technology

Title of the course : Principle of Food Processing

Subject Code : OEFT – 612A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- The basic concept of food processing and preservation.
- Contribution of nutrients from different food groups.
- The aspects of processing of different food groups.
- The manufacturing process of plant foods
- Emerging technologies applied to food processing

Course Outcome:

CO1	Develop the basic concept of food processing, causes of spoilage	Understanding
	and preservation of food.	
CO2	Have a concept of role of nutrients in food and human health	Applying
CO3	Get an overview on principles, mechanism and application of	Applying
	processing methods on different food groups.	
CO4	Apply their knowledge on effect of processing on the	Applying
	characteristics of different food groups.	
CO5	Understand the concepts related to emerging food processing	Understanding
	technologies.	

	CO/PO Mapping													
(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)														
COs	Programme Outcomes (POs)												Program Specific Outcomes (PSO)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	2	2	1	0	1	3	3	3	2
CO2	3	2	2	2	2	2	2	2	0	1	3	3	3	3
CO3	3	2	2	2	2	2	2	2	0	1	3	3	3	3
CO4	3	2	2	2	2	2	2	2	0	1	3	3	3	3
CO5	3	3	2	3	1	3	1	1	1	0	2	1	3	3
Average	3	2.2	2	2.2	1.8	2.2	1.8	1.6	0.2	0.8	2.8	2.6	3	2.8

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Objective and concept of food processing, Classification of	5
		food in relation to shelf life, food spoilage, preservation	
		methods. effects of processing on food constituents.	
	Nutrients	Basic concept of food, nutrients, nutrition, Definition,	5
		classification, properties and requirements of carbohydrates,	
		lipids, proteins, water, minerals and vitamins for humans.	
	Fruits and	Peeling, size reduction, processing and processed products of	5
	vegetables	fruits and vegetables. Minimal processing of fruits and	
		vegetables	
II	Cereals and	Concept of milling, Processed products of wheat and rice.	5
	millets	Types of millets and food uses.	
	Legume	Types, milling, germination and processed products.	5
	Oilseeds	Use of oilseeds, processing and oil extraction and food uses.	5
	Emerging food	Concept of high pressure, pulsed electric fields, radio	6
	processing	frequency and ultrasound processing.	
	technologies		
		Total=	36

Books Recommended:

Author	Title
1. Mathews RH	Legumes: Chemistry, Technology and Human Nutrition
2. Hoseney RS	Principles of Cereal Science and Technology
3. Kent NL	Technology of Cereals
4. ChakravertyA	Handbook of Post-Harvest Technology
5. Shukla BD	Oil Seed Processing Technology
6. Fellows P	Food processing technology: principles and practice
7. Kyzlink V	Principles of Food Preservation
8. Potter NN	Food Science

Title of the course : Principle of Food Preservation

Subject Code : OEFT – 612B

L	T	P	Credits	Weekly Load
3	0	0	3	3

Objectives: Objective of this course is to impart knowledge about

- The basic concept of food preservation.
- The factors affecting the shelf lives of commodities and different preservation techniques.
- The role of modern packaging techniques in food preservation.
- Novel technologies for food preservation.

Course Outcome:

On completion of the subject, the students will be able to:

CO1	Discuss fundamental principles of food preservation	Understanding
CO2	Describe the principles of low temperature preservation by	Understanding
	refrigeration, freezing and freeze drying	
CO3	Explain thermal processing and execute high temperature	Applying
	processing in food industry	
CO4	Explain the concept of water activity and preservation by Drying	Understanding
	& Dehydration	
CO5	Implement the knowledge of preservatives, fermentation and non	Applying
	thermal technology in food preservation.	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)								Spe Outc	gram cific omes SO)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	2	2	1	1	1	3	3	2	2
CO2	3	2	2	2	2	2	2	1	1	2	3	3	2	3
CO3	2	2	2	2	2	2	2	1	1	2	3	3	3	1
CO4	3	2	2	2	2	2	2	1	1	1	3	3	3	2
CO5	3	3	2	1	3	3	1	0	1	1	2	3	3	3
Average	2.8	2.2	2	1.8	2.2	2.2	1.8	0.8	1	1.4	2.8	3	2.6	2.2

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Introduction to food preservation - Objectives and	5
		techniques of food preservation, Factors affecting shelf of	
		food material during storage, and concept of water activity.	
	Thermal	High temperature based-Pasteurization, sterilization, drying,	8
	preservation	canning. Low temperature based- freezing and cold storage.	
	techniques		
	Bio-preservation	Fermentation: principles and microorganisms, curing and	5
	techniques	pickling.	
II	Use of	Chemical preservative, bio-preservatives, antibiotics,	4
	preservative	antioxidant, antimicrobials	
	Packaging as	Concept of food packaging, major packaging materials,	6
	Preservation	Active and Intelligent packaging. Control/Modified	
	Technique	Atmosphere packaging.	
	Emerging	Concept of high pressure processing, pulsed electric fields,	8
	preservation	ultrasound, irradiation and hurdle technology.	
	techniques		
		Total=	36

Books Recommended:

Author Title

Zeuthen P. Food Preservation Techniques
 Rahman MS Handbook of food preservation

3. Barbosa-Canovas GV Pulsed Electric Fields in Food Processing

4. Hui YH Handbook Vegetable of Preservation and Processing

5. Kyzlink V Principles of Food Preservation

6. Potter NN Food Science

Title of the course : Food and Nutrition

Subject Code : OEFT - 621A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Objectives: Objective of this course is to impart knowledge about

- Various aspects of food and nutrition
- Functions of food and nutrients.
- The dietary requirements and fulfilling the requirement from the consumption of food
- The concept behind the development of balance diet.

Course Outcome:

On completion of the subject, the students will be able to:

CO1	Describe the basic concept of food, nutrients, nutrition, health and	Understanding
	fitness	
CO2	Explain the fate of food on ingestion to the body.	Understanding
CO3	Interpret the role of macro & micro nutrients in human health	Applying
CO4	Develop a dietary chart for different age groups of Indian	Applying
	considering RDA and interpret the effect processing on food	
	component	
CO5	Discuss the nutrition and alternative systems for physical fitness	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Outc	cific			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1	2	1	1	3	1	2	2	1	2	3	1
CO2	3	3	2	2	3	3	0	1	1	2	2	1	2	2
CO3	2	2	1	1	0	1	0	1	1	1	2	1	3	3
CO4	2	2	3	3	2	0	1	2	2	3	2	2	3	3
CO5	0	1	3	3	0	0	1	2	1	1	2	1	3	3
Average	1.8	2	2	2.2	1.2	1	1	1.4	1.4	1.8	1.8	1.4	2.8	2.4

Unit	Main Topics	Course Outlines	Lecture(s)			
I	Introduction	Basic concept of food, nutrients, nutrition, health and	2			
		fitness. Interrelationship between nutrition and health.				
	Basics of	Basics of Body composition and changes during life	3			
	human body	span.				
	and nutrition	Concept of a desirable diet for optimum nutrition,				
		health and fitness				
	Metabolism	Digestion, absorption and metabolism of foods, Basal	6			
		and resting metabolism and influencing factors.				
	Classification	Functions of food and classification of food and	3			
		nutrients				
	Macronutrients	Carbohydrates- Occurrence and physiological	10			
		functions. Role of dietary fiber in health and disease.				
		Disorders related to carbohydrate metabolism.				
		Glycemic index of foods and its uses				
		Lipids – Concepts of visible and invisible fats.				
		Saturated, unsaturated and essential fatty acids-				
		sources and physiological functions.				
		Proteins- Concepts of essential and non-essential				
		amino acids- their role in growth and development.				
		Physiological functions of proteins. Protein energy				
		malnutrition.				
	Micronutrients					
II	Basic principles	Nutritional assessment and RDA for Indians	3			
	of planning diet					
	Nutrition and	Food groups, dietary guidelines and balanced diets.	4			
	effect of					
	processing	groups. Effects of processing on properties and				
		nutritional value of foods.				
	Nutrition and	Approaches to the management of fitness and health in	3			
	physical fitness	weight management. Alternative systems for health				
		and fitness – Ayurveda, yoga and meditation.				
		Total=	36			

Recommended Books

Author 1. Mudambi, SR and Rajagopal, MV Therapy	Title Fundamentals of Foods, Nutrition and Diet
2. Mudambi, SR, Rao SM and Rajagopal, MV	Food Science
3. Srilakshmi B	Nutrition Science
4. Swaminathan M	Handbook of Foods and Nutrition
5. Bamji MS, Rao NP, and Reddy V	Text Book of Human Nutrition
6. Manay MS, Shadaksharaswamy	Food-Facts and Principles

Title of the course : Unit Operations in Food Processing

Subject Code : **OEFT - 621B**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- The theory and application of basic unit operations performed in various food processing industries.
- The size reduction, and mixing operations of different types of foods necessary in the processing of foods.
- Application of the engineering principles to analyze and design the various unit operations and equipments.
- The separation of valuable components from the liquid, solid streams by physical, contact equilibrium processes as well as distillation process

Course Outcomes:

On successful completion of the subject, the students will be able to:

CO1	Describe the processing of foods in terms of common unit	Understanding
	operations like size reduction, mixing, and separation	
CO2	Execute his computational skills in calculating the energy required	Applying
	in size reduction, mixing operations	
CO3	Discuss the construction, working and applicability of various size	Understanding
	reduction, mixing and separation equipments.	
CO4	Interpret the optimum value of reflux ratio to achieve best quality	Applying
	product at minimum total cost in case of the continuous distillation	
	system.	
CO5	Explain the principle and application of leaching and extraction	Understanding
	process.	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	1	3	1	0	0	2	1	1	3	2
CO2	3	1	3	2	2	3	0	1	2	1	1	2	3	1
CO3	3	1	2	3	1	3	3	0	1	2	3	1	3	1
CO4	2	2	1	1	1	1	0	0	1	3	1	2	2	2
CO5	3	3	2	1	3	3	1	1	1	1	2	2	2	3
Average	2.8	1.8	2	2	1.6	2.6	1	0.4	1	1.8	1.6	1.6	2.6	1.8

Unit	Main Topics	Course Outlines	Lecture (s)
Ι	Introduction	Definition and application in food processing.	2
	Size reduction	Theory of communition, Ritinger's law, Kick's law,	6
		Bond's law and their applications in calculation of	
		energy required in grinding, Crushing efficiency,	
		Size reduction equipment used in food industry.	
	Mixing	Theoretical aspects of solid mixing. Mixing index,	6
		rate of mixing, Theory of liquid mixing, Equipment	
		for liquid and solid mixing.	
	Sieving	Separation based on size, Effectiveness of screens,	6
		Types of screens, Factors affecting the sieving	
		process, Fineness modules and particle size	
		distribution	
	Sedimentation	Theory, Gravitational sedimentation of particles in	4
		liquids and gases, Sedimentation equipment.	
II	Centrifugal	Basic equation, centrifugal clarification,	4
	separation	Equipments.	
	Filtration	Theoretical aspects, Fundamental equation for	5
		filtration, Filtration equipment.	
	Crystallization	Rate of crystallization, crystallization equilibrium.	4

Distillation	Liquid vapor equilibrium, distillation of binary	6
	mixtures, simple distillation, continuous distillation,	
	flash distillation, steam distillation.	
Leaching and	Gas – Liquid equilibria, Solid – Liquid equilibria,	6
extraction	Extraction-Solid Liquid extraction, Liquid-Liquid	
	extraction, stage equilibrium extraction.	
		Total=48

Recommended Books:

Author Title

1. P. Fellows Food Processing Technology

2. R. L. Earle Unit Operations in Food

Processing

Title of the course : Fundamentals of Biotechnology

Subject Code : **OEFT-622A**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- The basic understanding of biotechnology and its applications.
- The fundamentals of the microbial production of scp, organic acids, vitamins, enzymes and antibiotics.
- The different techniques such as tissue culture, mutations and genetic engineering.
- The different treatment techniques for the disposal of industry waste.

Course Outcomes:

On successful completion of the subject, the students will be able to:

CO1	Recognize the scientific advancements in biotechnology and its	Understanding
	multidisciplinary nature, and its application in an industry	
CO2	Describe different fermentation technologies for the production of	Understanding
	SCP, enzymes, organic acids, vitamins and antibiotics.	
CO3	Explain the techniques of tissue culture technique its, types of	Understanding
	mutations, its repair mechanisms and their potential applications.	
CO4	Explain basic techniques used in recombinant DNA technology.	Understanding
CO5	Discuss the types of wastes generated from the industry and	Understanding
	different treatment techniques applied for its disposal.	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)										Prog Spec Outc (PS	cific		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	3	3	1	1	2	2	1	3	1
CO2	3	2	3	3	1	3	1	0	1	2	1	2	3	2
CO3	3	1	1	3	1	2	1	1	0	1	2	2	2	3
CO4	2	3	3	2	3	3	1	1	3	1	2	1	1	3
CO5	3	1	1	3	2	2	1	0	0	1	2	1	1	3
Average	2.8	2	2.2	2.6	1.6	2.6	1.4	0.6	1	1.4	1.8	1.4	2	2.4

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	History, scope and present status as well as scope of	5
		biotechnology in India and its general applications.	
	Fermentation	Fermentation, Types of fermentation: solid, surface and	5
	techniques and	submerged fermentation. Advantages and	
	bioreactor	disadvantages, applications, bioreactor design	
	Fermentative	Single cell proteins, organic acids (lactic and citric	6
	production of	acid), antibiotics and vitamins with special reference to	
	products	substrates and optimum conditions for growth of	
		microorganism.	
	Enzyme	Sources of enzymes, advantages of microbial enzymes,	5
	technology	production of enzymes, applications of enzymes in	
		industry	
II	Tissue culture	Definition, medium used, cellular totipotency, somatic	5
	technology	hybridization, applications.	
	Mutation and its	Structure of DNA and RNA, Mutation, mutagens, types	5
	applications	of mutations and applications of mutations in strain	
		improvement.	

Genetic	Gene cloning procedures- different vectors and plasmids	5
engineering and	involved, general outline and applications of gene	
applications	cloning in different areas	
Environmental	Types of waste, different aerobic and anaerobic methods	6
biotechnology	for treatment of industrial waste with special reference	
	to methanogenesis.	
	Total=	42

Reference books

Author	Title
1. P.K. Gupta	Biotechnology
2. PS Panesar and SS Marwaha	Biotechnology in agriculture and food processing
3. Crueger and Crueger	Biotechnology
4. B.D. Singh	Biotechnology

Title of the course : Food Laws and Regulations

Subject Code : **OEFT-622B**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- The food quality, being affected from the adulterants, hazards etc and its safety.
- Different food laws and standards in India and their requirements and importance in controlling the quality
- Different international laws and regulatory agencies and their requirements and importance in controlling the quality.
- Food safety regulations and their implementation in food industry to ensure the quality and safety of the foods.
- Retail standards and other regulatory agencies and their importance in controlling the operations.

Course Outcomes: On successful completion of the subject, the students will be able to:

CO1	Know different food laws and their importance	Understanding
CO2	Discuss different adulterants and hazards and their safety measures	Understanding
CO3	Implement different safety tools and regulation in food industry to	Applying
	produce safe products	
CO4	Gain knowledge of international food laws and safety regulations	Applying
	and their implementation criteria	
CO5	Gain knowledge of international food laws and safety regulations	Applying
	and their implementation criteria	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs		Programme Outcomes (POs)											Spe Outc	gram cific omes SO)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	0	3	1	0	1	0	0	0	3	2	2	2
CO2	1	2	1	2	2	1	0	2	0	1	2	1	2	2
CO3	3	0	2	2	3	3	1	3	1	2	1	3	3	2
CO4	2	2	2	1	2	1	2	3	1	2	2	3	3	2
CO5	1	0	0	2	0	3	1	1	2	1	2	3	3	3
Average	1.6	1.1	1	2	1.6	1.6	1	1.8	0.8	1.2	2	2.4	2.6	2.1

Unit	Main Topics	Course Outlines	Lecture					
			(s)					
I	Introduction	Concept and meaning trends in Food quality and food						
		Safety, food adulteration, food hazards, Natural toxins.						
		Concept, need and importance of food laws, standards	6					
		and regulations.						
	Food Laws and	Food Safety and Standards (FSS) Act, 2006, FSSA-						
	Standards in India	2008 FSSA Rules and Regulations-2011. Agricultural						
	and their	Produce (Grading and Marketing) Act, 1937, Sugar cane control order-2006 (Under ECA), Export (Quality						
	requirements							
		Control & Inspection) Act, 1963, Bureau of Indian	12					
		Standards (BIS). (implementation criteria, requirements,						
		structure, jurisdiction, specific importance and						
		applications)						
	International food	International Organizations – FAO (Food & Agriculture						
	laws and	Organization), WHO (World Health Organization),	10					
	regulatory	Codex Alimentarius Commission (CAC), ISO-9000-01	10					
	agencies.	certification.						
II	Food Safety	Hazard Analysis Critical Control Points (HACCPs),	o					
	regulations	ISO- 22000, ISO-14000, GHP, planning, application,	8					

	Implementation criteria, case study, requirements,	
	benefits, structure etc.	
The Regulation of	Irradiation of foods, Exposure, dose of irradiation,	
Irradiated Foods	requirement for the process of irradiation, restrictions on	8
and ISO-9001	irradiations of foods and record of irradiations.	
Retail standards	Food and BRC/IOP standards and International Food	
and Other	standards. Food and Drug Administration (FDA), U.S.	
regulatory	Department of Agriculture (USDA). WTO. Role of	8
agencies	these agencies in trade, food control, food supply	
	managements, tariff etc.	
	Total=	52

Books Recommended:

Author Title

1. Ronald S. Pearson's Composition and Analysis of foods

2. Ranganna Handbook of Analysis of Fruit and Vegetable and their Products

3. Pomeranz and Meloan Food Analysis

4. I.S.A HACCP & ISO-22000. ISO9000-01

Title of the course : Flavour Technology

Subject Code : **OEFT -711A**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- Flavors regarding available materials, classification on the basis of origin, physical characteristic.
- Flavor perception on tongue and in nose;
- Flavour generation in plants and during processing
- Various analytical techniques for flavour evaluation

Course Outcomes:

On successful completion of the subject, the students will be able to:

CO1	Describe current status of flavor industry and basic concepts flavor	Understanding
	technology.	
CO2	Explain the changes in food flavor due to processing: Maillard rxn	Understanding
CO3	Discuss the interaction of flavor from lipid, carbohydrate and protein matrix in terms of retention and release	Understanding
CO4	Describe the criteria and methods for flavor evaluation considering the Indian standards.	Understanding
CO5	Select the flavor for particular food matrices	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Prog Spec Outc (PS	cific			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	2	2	0	2	2	3	3	3	1
CO2	3	3	2	3	3	3	2	2	0	2	1	3	3	3
CO3	3	3	3	2	3	2	1	2	0	2	1	3	2	2
CO4	3	3	3	3	3	3	2	2	1	2	2	3	1	2
CO5	3	2	2	2	3	2	2	2	3	2	3	3	2	3
Average	3	2.8	2.6	2.6	3	2.4	1.8	1.6	1.2	2	2	3	2.2	2.2

Unit	Main Topic	Detailed Contents	Lectures
I	Introduction	Definition of Flavour, Classification of Food Flavours,	4
		Chemical compounds for flavors, Natural vs Artificial	
		flavours	
	Anatomy of	Perception of taste and aroma, Gustation and Olfaction,	8
	flavour	gustatory receptors, Types of taste and their perception,	
		perception of odour in mouth and nose	
	Biogenesis of	Generation of flavors by carbohydrate, Lipids and	10
	flavours	protein metabolism, role of secondary metabolites in	
		flavor generation in fruits and vegetables	
II	Flavour	Sugar Thermal Breakdown, General overview of the	6
	development	Maillard reaction, pathways for flavor formation via the	
	during food	Maillard reaction, Lipid breakdown, Lignin degradation	
	processing		
	Analytical	Various types of Chromatography Techniques, Mass	6
	techniques in	spectroscopy, Solid phase micro extraction	
	flavour		
	technology		

Flavor	Bakery products fermented dairy products, meat	8
generation in	products. Fruits and vegetable products, Microcapsule	
Foods and its	system, Encapsulation techniques for flavours	
encapsulation		
	Total=	42

Books Recommended:

Author Title

1. Reineccius G Flavor Chemistry and Technology

2. Andrew J. Taylor, Robert S. T. Linforth Food Flavour Technology

3. Morton ID and Macleod AJ Food Flavors

Title of the course : Food Plant Sanitation and Waste Management

Subject Code : OEFT - 711B

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- The basics of contamination and sanitation in food plant.
- Basic principles and types of cleaning and disinfection in food processing plant.
- Waste water treatment and solid waste disposal and management.
- Cleaning and sanitation procedure in dairy and meat industry.
- Monitoring food plant sanitation and HACCP.

Course Outcomes: On successful completion of the subject, the students will be able to:

CO1	Provide sanitation information needed to ensure hygienic practices	Understanding
	in food processing and preparation operations	
CO2	Develop a working knowledge in plant and equipment design and	Understanding
	materials, cleaners and cleaning techniques, sanitizers, monitoring	
	cleanliness, pests and their control, HACCP and personal hygiene	
CO3	Develop ability in selecting, establishing and maintaining a	Understanding
	suitable program of sanitation	
CO4	Explain the cleaning and sanitation procedures of different food	Understanding
	processing plants.	
CO5	Implement water and solid waste management in food industry.	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Spe Outc	gram cific omes SO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	3	2	0	1	1	2	1	3	2
CO2	3	1	1	2	1	1	3	1	1	2	1	2	2	2
CO3	2	3	3	2	1	3	1	2	3	1	2	2	2	3
CO4	2	2	3	1	3	3	1	2	1	1	1	2	3	3
CO5	3 2 2 1 3 1 2 2 1 1								2	2				
Average	2.6	2	2.2	1.6	1.4	2.6	1.6	1.4	1.6	1.4	1.4	1.6	2.4	2.4

Unit	Main Topics	Course outlines	Lecture (s)				
I	Introduction	Common terms used in sanitation, Role of sanitation in	4				
		food plant. Sources of contamination in a food plant.					
	Principles of	Methods of cleaning and practical applications, Factors	6				
	cleaning and	influencing cleaning, Types of soil and cleaning					
	disinfection	compounds, Handling and storage precautions of					
		cleaning compounds, Guided tour to DFST pilot plant for					
		demonstration					
	Water resources	Types of sources of water for food processing,	6				
		purification & treatment, Water treatment methods,					
		Waste-water components and analysis, Microorganisms					
		of importance in waste-water treatment					
		Field trip to National Water and Sewerage cooperation					
	Waste disposal	Strategy of waste disposal, Solid-waste disposal, Liquid-	4				
	and treatment	waste disposal					
II	Dairy processing	Major pathogens, Plant construction, Sanitation	6				
	sanitation	management, Cleaning equipment					
	Meat and	at and Common pathogens, Sanitation management, Sanitizers					
	poultry plant	for meat & poultry plants, Sources of sea food					
	sanitation, Sea	contamination					

food plant		
sanitation		
Legislation and	Total quality management, Hazard Analysis Critical	4
cost-benefit	Control Points (HACCP), Development of a HACCP	
analysis in waste	program, Cost benefit mathematical models, Individual	
management	assignment presentations	
	Total=	34

Books Recommended:

Author Title

Troller, J.A. Sanitation in Food Processing. 2nd ed. ACADEMIC PRESS, INC.

Marriot, N.G. Essentials of Food Sanitation/ Robertson, G., Consulting editor.

International Thomson Publishing

Marriot, N.G., Gravani, R.B. Principles of Food Sanitation, 5th ed. Springer Science Business Media, Inc.

Title of the course : Fluid Flow Operation

Subject Code : **PEFT-611A**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- The theoretical concepts and application related to behaviour of fluids with respect to foods.
- With various pressure, flow and viscosity measuring devices.
- The engineering principles to understand the fluid dynamics
- With fluidization process and its application in conveyors and driers.

Course Outcomes:

On successful completion of the subject, the students will be able to:

CO1	Implement the basic concepts of fluid-flow phenomena in food	Understanding
	processing.	
CO2	Discuss various fluid flow theorems and implement in various flow	Applying
	measuring devices.	
CO3	Explain the laminar viscous fluid flow behavior in pipes.	Understanding
CO4	Describe the requirements, working principle and construction of	Understanding
	various pumps.	
CO5	Discuss about viscometry and determine pressure drop in fluidized	Applying
	bed	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)						Spe Outc	gram cific omes SO)						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	1	0	2	1	0	1	1	1	3	2
CO2	3	3	2	1	1	3	1	0	1	1	2	1	3	1
CO3	3	1	3	1	3	3	2	2	1	1	2	2	2	2
CO4	3	2	3	3	2	3	1	0	1	2	2	1	1	2
CO5	3	3	2	3	3	1	1	0	1	1	1	3	2	1
Average	3	2.2	2.4	2.2	2	2	1.4	0.6	0.8	1.2	1.6	1.6	2.2	1.6

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introductio	Physical properties of fluids like mass density, specific	6
	n to fluid	gravity, viscosity, pressure, factors affecting the rheological	
	flow	parameters; fluid pressure and its measurement; manometers,	
		simple manometers, differential manometers; concept of	
		Reynolds's number.	
	Fluid flow	Derivation of continuity equation; different types of energies	6
	measureme	of a liquid in motion; derivation of Bernoulli's equation;	
	nt	practical applications of Bernoulli's equation like venturi	
		meter, orifice meter, pitot tube, rotameter. Numerical	
		problems.	
	Laminar	Flow of viscous fluid through circular pipe, Coefficient of	8
	viscous fluid	friction; head loss due to Friction in pipes; head loss due to	
	flow	sudden enlargement, contraction, vena contract, entrance	
		and exit losses; Stokes law (laminar flow around a sphere);	
		laminar flow through porous media; pressure drop in flow	
		through porous media.	
II	Pumps	Types of pumps and classification criteria, Theory and	5
		working of centrifugal pump, reciprocating pumps, external	
		gear pump (rotary pump), Lobe pump, Vane pump etc.	

Viscometry	Theory and working of capillary tube viscometer for Newtonian and non-Newtonian fluids; Falling sphere	6
	resistance method; Rotational viscometer; Cone and plate type viscometer; Circular disc viscometer.	
Fluidization	Physical properties of particles like size, shape, sphericity, porosity, superficial and interstitial velocity, hydraulic radius, equivalent diameter etc. Mechanism of fluidization, characteristics of gas — solid fluidized systems, Fanning friction factor for porous media; minimum porosity, bed weight, pressure drop in fluidized bed, theory and analysis of fluidization process; particulate fluidization; aggregative (or bubbling) fluidization; principle of fluidized bed drying equipment; pneumatic conveyers. Numerical problems.	9
	Total=	40

Recommended Books:

Author	Title
1. McCabe & Smith	Unit Operations in Chemical Engineering,
2. V Gupta & S.K. Gupta	Fluid Mechanics & Application,
3. G S Sawhney	Fundamentals of Fluid Mechanics
4. R K Bansal	A Text book of Fluid Mechanics and Hydraulic machines
5. Arora K. R	Fluid Mechanics Hydraulic and Hydraulic machines
6. Ghosal, S K, Sanyal S K and Datta S	Introduction to Chemical Engineering,
7. Ibraz Albert and Barbosa-Canovas G V	Unit Operations in Food engineering
8. S C Rao & C Guha	Transport Phenomena

Title of the course : Post-harvest Engineering

Subject Code : PEFT-611B

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- Handling of agricultural produce soon after harvesting.
- Various types of storage system for agricultural produce.
- Design of storage system for perishable and non-perishable produce.
- Food sensing technology and its use in post-harvest management.

Course Outcomes: On successful completion of the subject, the students will be able to:

CO1	Describe the design and principle of post harvesting handling	Understanding
	systems and factors affecting postharvest losses.	
CO2	Discuss the physiological changes and concept of crop process	Applying
	engineering.	
CO3	Implement the concept of unit operations used in storage of fresh	Understanding
	produces.	
CO4	Explain pre-treatments to control disease of fresh produces	Understanding
CO5	Interpret the principle of various operation used in storage of food	Applying
	commodities.	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)										Program Specific Outcomes (PSO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	3	2	2	1	3	1	1	2	1	1	3	1
CO2	3	1	2	2	2	3	1	3	3	1	2	2	3	2
CO3	2	2	3	3	3	3	1	0	1	2	1	2	2	2
CO4	2	1	3	3	2	3	1	1	0	1	2	1	3	2
CO5	3	1	1	2	2	3	1	1	0	1	1	2	1	2
Average	2.6	1.2	2.4	2.4	2.2	2.6	1.4	1.2	1	1.4	1.4	1.6	2.4	1.8

Unit	Main Topic	Detailed Contents	Lectures
I	Introduction to	Internal and External Factors Affecting Quality of Fresh	8
	Postharvest Food	Produce, Grain Type and End-use Quality Determining	
	Systems	Factors, Fruit and Vegetable Handling Systems	
	Grain Post-	Concept of Aeration System, identification of design	11
	Harvest Storage,	parameter of aeration system. Drying theory and its	
	Drying, Handling	application drying of food grains. Identification of design	
		parameter for designing of food grain drier. Design of food	
		grain Handling System.	
II	Handling and	Understanding of various losses due to physiological	8
	Storage of	changes, mechanical damage, pests and diseases.	
	Horticultural	Understanding the concept of quality assessment of	
	Crops	horticultural crops and conservation techniques.	
	Design and	Concept of Refrigeration System, Heat load calculation and	8
	Operation of	selection other parameters for design.	
	Cooling Systems	Definition, concept understanding of Controlled	
	for Fresh	Atmosphere and Modified Atmosphere Storage system.	
	Produce	Identification of various parameters, and its application in	
		designing of CA and MA storage system.	

Pre-treatment	Effect of Pre-Cooling on Produce Quality. Hot Water and	8
and Handling	Vapor Treatment for Disease and Insect Control, Grading,	
Operation for	Waxing and Packaging, Packing House design	
Fruits and		
Vegetables		
	Total=	43

Recommended Books:

Author	Title
1. Bala, B. K.	Drying and storage of cereal Grains
2. Sinha and Muir	Grain storage-Part of a System
3. Volkind and Roslov A.	Modern Potato and Vegetable storage
4. Multon, J.L.	Preservation and storage of grains, seeds and their by-products
5. Vijayaraghavan, S	Grain storage Engineering and Technology
6. Singh and Sahay	Unit operations in Agriculture processing

Title of the course : Food Storage Engineering

Subject Code : PEFT- 621A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course objectives: Objective of this course is to impart knowledge about

- Spoilage mechanism of perishables and non-perishables and its requirements.
- Different types of handling equipments and their design.
- Design of storage structures for both perishables and non-perishables.
- Different management practices followed in storage systems.

Course Outcomes: On successful completion of the subject, the students will be able to:

CO1	Describe the engineering properties of biological materials and	Understanding			
	their importance in design of handling and storage equipments.				
CO2	Discuss the storage environment and its interaction with stored	Understanding			
	products.				
CO3	Describe the design of various handling equipments and storage Understanding				
	structures like silos and bins.				
CO4	Execute the theories associated with storage structures of	Applying			
	perishable & non-perishable food				
CO5	Interpret the management practices followed for storage structures	Applying			
	and godowns.				

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Spe Outc	gram cific omes SO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	3	3	1	1	0	1	2	1	3	1
CO2	3	1	3	2	1	1	3	1	3	2	1	2	1	2
CO3	3	3	1	3	3	1	2	0	1	2	1	1	1	3
CO4	3	3	2	1	1	3	1	1	0	0	2	2	3	3
CO5	3	3	3	3	3	3	1	1	1	2	2	1	3	2
Average	3	2.4	2	2	2.2	2.2	1.6	0.8	1	1.4	1.6	1.4	2.2	2.2

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Purpose and justification of storage of perishable and non-	4
		perishable foods, factors influencing shelf life of food	
		materials, Brief account of engineering properties of	
		biological materials important in design of handling and	
		storage equipments	
	Storage	Storage environment and its interaction with stored product;	8
	requirements	temperature and moisture migration, storage practices	
		(including fumigation and aeration of stored product); design	
		of aeration systems.	
	Mechanical	Design of handling equipments like bucket elevators, belt,	10
	Handling	screw and pneumatic conveyors, and fans	
	equipments		
II	Storage	Grain pressure theories- Rankine and Airy theory: Design of	10
	structures for	bulk storage structures like bins and silos; Design of bag	
	non-perishables	storage structures such as cover and plinth (CAP) and	
		warehouses	
	Storage	Design aspects of ventilated, cold, modified and controlled	8
	structures for	atmosphere storage systems.	
	perishables		

Management	Labeling, record keeping and management of godowns, silos	4
practices	and cold storages; maintenance of buildings and equipments;	
	sanitary conditions in storages	
	Total=	44

Reference Books and Suggested Readings:

Author	Title
1. Bala, B. K.	Drying and storage of cereal Grains
2. Sinha and Muir	Grain storage - Part of a System
3. Volkind and Roslov A.	Modern Potato and Vegetable storage
4. Multon, J.L.	Preservation and storage of grains, seeds and their by products
5. Vijayaraghavan, S	Grain storage Engineering and Technology
6. Singh and Sahay	Unit operations in Agricultural processing

Title of the course : Technology of Bakery and Confectionery Products

Subject Code : **PEFT-621B**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- Selection of the raw material used for preparation of various bakery and confectionary products.
- Basics of various rheological properties and use of various equipment like Mixograph, RVA, Extensograph etc for measuring the properties of flour and dough.
- The basic steps and operation in preparation of Bread, Biscuits, cakes and other confectionary products..
- Basic operation and working of various equipments involved in bakery and confectionary technology.

Course Outcomes:

On successful completion of the subject, the students will be able to:

CO1	Discuss the current status and raw material of bakery industry,	Applying
	relate the rheological properties to the quality of baked product.	
CO2	Explain the working principle of various rheological equipment	Understanding
	like Falling number, RVA etc.	
CO3	Execute the knowledge for development of various bakery	Applying
	products and their quality determination.	
CO4	Describe the processing and preparation of confectionary products	Understanding
	like fruits drops, different gums and their quality evaluations	
CO5	Discuss the construction and working of various equipments	Understanding
	involved in manufacturing of bakery and confectionary products.	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)										Prog Spec Outc (PS	cific		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	3	1	1	1	1	3	2	1	1	2
CO2	3	2	3	3	3	3	1	1	0	1	2	2	1	2
CO3	2	1	1	1	3	3	1	0	1	3	1	1	1	3
CO4	2	1	1	1	3	3	3	1	0	1	1	3	3	1
CO5	3	1	2	1	2	0	3	0	1	3	2	3	3	1
Average	2.6	1.4	1.8	1.4	2.8	2	1.8	0.6	0.6	2.2	1.6	2	1.8	1.8

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Global status of Bakery and Confectionary industry	4
	Raw material for	Essential and optional raw materials for bakery products,	6
	bakery products	Dough development, Methods of dough mixing, Dough	
		chemistry, Rheological testing of dough-Farinograph,	
		Mixograph, Extensograph, Amylograph / Rapid Visco	
		Analyzer, Falling number, Hosney's dough stickiness tester	
		and interpretation of the data	
	Manufacturing of	Detailed description of unit operations for the manufacturing	12
	bakery products	of bakery products-Bread, Biscuits, Cakes and the effect of	
		variations in formulation and process parameters on the	
		quality of the finished product; quality consideration and	
		parameters; Staling and losses in baking	
II	Manufacturing of	Characteristics and processing of raw material; Technology	12
	confectionary	of manufacturing of toffee, chocolate, fruit drops, hard boiled	
	products	candies, bars, chewing gums, bubble gums and special	
		confectionary products; colour, flavor and texture of	
		confectionary; standard and regulations	
	Equipment used	Construction and working of various equipments like Mixers,	10
	in bakery and	proofing chambers, dough dividers, moulder and sheeter,	
		baking ovens, cooling chamber, sealing and packaging	

confectionary	confectionary machines, Rolling and cutting machines project profile of	
industry	bakery and confectionary unit	
	Total=	44

Books Recommended:

Author	Title
1. SB Arora	Handbook of Bakery Products
2. Matz	Bakery Technology and Engineering
3. Dendy&Dobraszczyk	Cereal and Cereal Products.
4. Hoseney RS	Principles of Cereal Science and Technology
5. Kent NL	Technology of Cereals.
6. Kulp K & Ponte GJ.	Handbook of Cereal Science and Technology
7. Lorenz KL.	Handbook of Cereal Science and Technology

Title of the course : **Health and Functional Food**

Subject Code : **PEFT-711A**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- Classification of various food bioactive components showing health benefits.
- various type of health and functional foods for different aged group and alleviating chronic or lifestyle disease/disorder.
- extraction of bioactive compounds using non-thermal extraction techniques.
- effect of storage, packaging and safety of bioactive components and functional foods

Course Outcomes:

On successful completion of the subject, the students will be able to

CO1	Discuss the scope, status and importance of functional foods and	Understanding
	nutraceuticals in India, types of functional food and their properties	
CO2	Explain the various physiological and biochemical aspects of life	Applying
	threatening and chronic diseases and effect of various bioactive	
	components on such diseases.	
CO3	Select the raw material and processing of bioactive components	Understanding
CO4	Discuss safety and legal aspects and factor affecting marketing of	Understanding
	nutraceutical and functional food.	
CO5	Discuss the packaging requirements and changes during storage of	Applying
	bioactive components	

	CO/PO Mapping													
(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)														
COs	Programme Outcomes (POs)										Program Specific Outcomes (PSO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	1	1	3	1	2	1	1	2	1	1	2
CO2	2	1	1	3	2	3	1	1	1	2	3	1	3	2
CO3	3	1	1	3	1	3	3	2	1	2	2	1	3	3
CO4	3	1	1	2	2	3	1	1	2	1	1	1	3	1
CO5	1	3	3	2	2	3	1	1	1	2	2	2	2	2
Average	2.2	1.6	1.8	2.2	1.6	3	1.4	1.4	1.2	1.6	2	1.2	2.4	2

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Status and scope of health and functional foods in India,	3
		Definition and classification of nutraceuticals	
	Health and	Concept, types, development of functional foods, infant and	7
	functional foods	baby foods, adolescent/ teen age foods, foods for pregnant	
		ladies and nursing mothers, geriatric foods.	
	Food constituents	Various food constituents responsible for functional effects	10
		-Anti-carcinogenic, hypocholesterolaemia and	
		hypoglycaemic foods	
		- Dietatic foods, anti-ageing foods	
		- Fortified foods, diabetic foods	
		- Biofedic, prebiotics and probiotic foods	
II	Processing and	Nonthermal extraction of bioactive compounds, Processing	6
	selection criteria	of health and functional foods.	
	Storage,	Storage, packaging and labeling of health and functional	4
	packaging and	food.	
	labeling		
	Marketing	Marketing aspects of health and functional foods	2
	aspects		

Safety aspects	Safety / Legal aspects of health and functional foods,	4
	transgenic plant foods with health claims	
	Total=	36

Author	Title
1. Chadwick, Henson, Moseley	Functional Foods
2. Jeffrey Hurst	Methods of Analysis for Functional Foods and
Nutraceuticals	
3. Mazza	Functional Foods
4. Wildman	Handbook of Nutraceuticals and Functional Foods
5. Burton	Human nutrition: A textbook of nutrition in health and
disease	
6. Joshi	Nutrition and Dietetics.
7. Howe, Saunders	Basic Nutrition in Health and Disease.

Title of the course : **Technology of Food Plant By-product Utilization**

Subject Code : **PEFT - 711 B**

L	T	P	Credits	Weekly Load				
3	0	0	3	3				

Course Objectives: Objective of this course is to impart knowledge about

- The importance of waste utilization from different food processing industries.
- Design, construct, operate and manage waste treatment for biogas plant.
- The concept of by-product Management, Minimization and Utilization.
- Legal, technical and management principles for effective by product utilization.
- The best available technologies for by product processing.

Course Outcomes:

On successful completion of the subject, the students will be able to:

CO1	Describe the current status of food processing waste and strategies	Understanding
	to minimize the waste	
CO2	Execute the knowledge of utilization of fruits & vegetable and	Applying
	cereals based waste and manufacturing of various useful by-	
	products.	
CO3	Discuss the utilization of Meat, fish and poultry based waste and	Understanding
	manufacturing of various useful by- products	
CO4	Execute the knowledge of utilization of dairy based waste and	Applying
	manufacturing of various useful by- products	
CO5	Execute the knowledge of utilization oilseed processing and	Understanding
	beverage industry based waste and manufacturing of various useful	
	by- products	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Spec Outc	gram cific omes SO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	3	2	0	1	1	2	1	3	2
CO2	3	1	1	2	1	1	3	1	1	2	1	2	2	2
CO3	2	3	3	2	1	3	1	2	3	1	2	2	2	3
CO4	2	2	3	1	3	3	1	2	1	1	1	2	3	3
CO5	3	2	2	2	1	3	1	2	2	2	1	1	1	2
Average	2.6	2	2.2	1.6	1.4	2.6	1.6	1.4	1.6	1.4	1.4	1.6	2.2	2.4

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Identification of useful products from agricultural waste and food	10
		processing waste. By-products and effluent management specific to	
		food processing units.	
	By-products	Utilization of Fruit and Vegetable Wastes: Types of wastes in fruits and	7
	of F&V	vegetable processing industries. Processes for waste utilization from	
		fruit and vegetable industries	
	Cereal	Utilization of by-products from Wheat, rice, corn and dal milling.	7
	industry by-	Extraction of oil from wheat germ. Rice bran utilization for edible grade	
	products	oil extraction.	
	Meat, fish	Animal skins, bones, hides, trimmings, blood, fatty tissues, horns, feet,	7
	and poultry	hoofs or internal organs utilization. Production of gelatin. Utilization of	
	industry by-	eggshell. fish oils, fish protein concentrate, fish meal, bioactive	
	product peptides, and fish protein hydrolysates		
II	Dairy Utilization of by-products from dairy industry-whey utilization, ghee		6
	industry by-	residue, butter milk, lactose utilizations. Preparation of beverages from	
	product	whey. Preparation of toffee/pinni from ghee residue. Curd utilization etc.	

Oilseed	Utilization of by- products from oil milling industry- husk, oil cake for	6						
processing	protein extraction and cattle feed, by products from oil refining-wax,							
	pigment, gums, lecithin, free fatty acids. Extraction of protein from oil							
cake. Soap formation from free fatty acids.								
Beverage	vine prunings, grape stalks, grape pomace and grape seeds, yeast lees,	5						
Industry	tartrate, carbon dioxide and wastewater, production of ethanol, tartrates							
	and malates, citric acid, grape seed oil, hydrocolloids and dietary fibre							
	from pomace, utilization of grape seed extracts (GSE).							
	Total=	47						

Author	Title
1. Metcalf & Eddy,	Waste water Engineering Treatment and Reuse
2. Eckenfelder, W. W. Jr.,	Industrial Water Pollution Control
3. Beagle	Rice Husk Conversion to Energy
4. A. Chakraverty	Post Harvest Technology of Cereals, Pulses and Oilseeds

Title of the Course : **Technology of Beverages**

Subject Code : **PEFT - 712A**

L	T	P	Credits	Weekly Load				
3	0	0	3	3				

Course Objectives: Objective of this course is to impart knowledge about

- Importance of beverage and status of beverage industry in India
- Different types of beverages and their formulation.
- The alcoholic beverages and their processing.
- The changes occurring during processing of both alcoholic and non-alcoholic beverages.

Course Outcomes: On successful completion of the subject, the students will be able to:

CO1	Describe status and different water treatment techniques before its	Understanding
	utilization in beverages with quality standards.	
CO2	Discuss the technology of carbonated soft drinks.	Understanding
CO3	Execute the knowledge of processing of different types of tea and	Applying
	coffee and cocoa beans in food industry	
CO4	Explain the involved technologies in production of alcoholic	Understanding
	beverages	
CO5	Examine the physical, chemical and biological changes occurring	Analyzing
	in the processing and storage of both alcoholic and non-alcoholic	
	beverages.	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs		Programme Outcomes (POs)									Spe Outc	gram cific omes SO)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	1	1	3	1	2	1	1	2	1	1	2
CO2	2	1	1	3	2	3	1	1	1	2	3	1	3	2
CO3	3	1	1	3	1	3	3	2	1	2	2	1	3	3
CO4	3	1	1	2	2	3	1	1	2	1	1	1	3	1
CO5	1	3	3	2	2	3	1	1	1	2	2	2	2	2
Average	2.2	1.6	1.8	2.2	1.6	3	1.4	1.4	1.2	1.6	2	1.2	2.4	2

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Beverage and its importance in modern life; current status of beverage industry in India	1
	Bottled Water	Water treatment before its utilization in beverages; mineral water; bottled water; quality standards of water	5
	Soft drinks	Technology of carbonated soft drinks; role of various ingredients of soft drinks; carbonation of soft drinks	6
	Tea	Tea plantation; processing of black tea, green and semi fermented tea; grading of tea; chemical and biochemical changes during processing of tea	8
II	Coffee	Structure of coffee bean; processing of green coffee beans (dry and wet processes); conversion of green coffee into beverage; manufacturing of instant and decaffeinated coffee; chemical changes during coffee processing	8
	Cocoa	Cocoa plantation; processing of raw bean and role of fermentation; roasting procedure; processing of roast bean; chemical changes during various stages of processing	8

Alcoholic	Production of Beer; role of yeast in Beer and other alcoholic	6
beverages	beverages; ale beer; lager beer; technology of brewing process; Wine and related beverages; Distilled spirits	
	Total=	42

Author Title

1. Varnam and Sutherland Beverages - Technology, Chemistry and Microbiology

2. Lea and Piggot Fermented Beverage Production

Title of the course : Industrial Microbiology

Subject Code : **PEFT - 712B**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

• The industrially important microorganisms.

• The basics of fermenter and different types of fermentation processes.

• The principles of secondary metabolite production.

• Role of industrially important micro-organisms in production of fermented food products

Course Outcomes: On the successful completion of the course, students will be able to:

CO1	Report the isolation, screening and genetic improvement of	Understanding
	industrially important microorganisms.	
CO2	Discuss the design and working of various type of fermentation	Understanding
	system	
CO3	Describe the principle associated to production of various	Understanding
	biomaterial by fermentation process.	
CO4	Explain the secondary metabolite production and their properties.	Understanding
CO5	Execute the knowledge to utilize and dispose the Food industry	Applying
	waste through Microorganism and Genetically modified	
	microorganism.	

^{*}As per Blooms Taxonomy

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)								Program Specific Outcomes (PSO)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	2	1	1	1	1	2	2	2	1	3	1
CO2	2	2	3	3	1	2	1	1	0	3	2	1	1	2
CO3	2	2	2	3	1	3	0	3	1	1	2	2	3	3
CO4	2	1	1	3	2	1	1	0	2	2	1	1	1	3
CO5	3	2	1	1	2	1	3	1	2	1	2	2	2	2
Average	2.4	1.6	1.6	2.4	1.4	1.6	1.2	1.2	1.4	1.8	1.8	1.4	2	2.2

Unit	Main Topics	Course Outlines	Lecture(s)
I	Introduction	Historical development in industrial microbiology	3
		General overview about the industrially important organisms	
	Fermentation	Types of fermentation and factors affecting fermentation.	7
	Process	Submerged fermentation surface fermentation and solid	
		substrate fermentation.	
		Fundamentals of Batch, fed batch and continuous	
		fermentation.	
	Bioreactors	Designing and development of a bioreactor.	8
		Materials used in the construction of bioreactors.	
		Aeration and agitation systems for bioreactors, baffles.	
II	Production of	Raw materials used & microorganisms involved, optimum	10
	organic acids	process parameters for the production lactic acid.	
	&polysaccharides	Raw materials used, microorganisms involved and optimum	
		process parameters for the production of citric acid and	
		acetic acid.	
		Raw materials, microorganisms involved and process for the	
		Fermentative production of microbial Xanthan.	
		Raw materials, microorganisms involved and process for the	
		Fermentative production of microbial pullulan.	

Pro	oduction of	Raw materials, microorganisms involved and process for the	8
alc	coholic	production of non-distilled of wine.	
bev	verages	Raw materials, microorganisms involved and process for the	
		production of non-distilled of beer.	
		Raw materials, microorganisms involved and process for the	
		production of distilled alcoholic beverages -whiskey.	
		Raw materials, microorganisms involved and process for the	
		production of distilled alcoholic beverages- brandy.	
		Total =	36

Author	Title
1. M.M.J. Waites, N.L. Morgan, J.S. Rockey and G.	Industrial Microbiology: An Introduction
Higton	
2. K.S. Bilgrami	Essentials of Microbiology
3. Casida	Industrial Microbiology
4. W. Crueger, A. Crueger and T.D. Brock	Biotechnology: A Textbook of Industrial
	Microbiology
5. Stanbury P.F. Whitaker A., Hall S.J	Principles of Fermentation Technology

Title of the course : Food Additives and Ingredients

Subject Code : **PEFT - 721A**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- Various different types of food additives
- Role of food additives in food quality control
- The techniques of best use of food additives
- The role of food additives in health maintenance and cure of diseases

Course Outcomes:

On successful completion of the subject, the students will be able to

CO1	Describe the classification and functions of various food additive	Understanding
	and their toxicological evaluation.	
CO2	Understand the suitable application of food ingredients in health	Understanding
	foods and convenience food preparation	
CO3	Learn the techniques of food additives stability and use level,	Understanding
	Familiarize various naturally occurring food additives	
CO4	Familiarize various aspects of food production and application of	Understanding
	food additives	
CO5	Learn the students about the techniques used to in the preparation	Applying
	of natural food additives	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)								Prog Spec Outc (PS	cific				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	3	1	1	2	2	1	2	2	1	2	1
CO2	1	2	2	1	1	2	2	3	2	2	1	1	3	1
CO3	2	2	1	1	1	3	2	1	2	3	2	2	1	3
CO4	1	3	3	2	2	1	2	1	0	2	1	1	3	1
CO5	3	2	2	1	2	2	3	1	0	1	2	2	3	2
Average	1.8	2	1.8	1.6	1.4	1.8	2.2	1.6	1	2	1.6	1.4	2.4	1.6

Unit	Main Topics	Course Outlines	Lecture (s)
I	Food additives	Definitions, classification and functions,	12
		Preservatives, antioxidants, colors and flavors	
		(synthetic and natural), emulsifiers, sequesterants,	
		humectants, hydrocolloids, sweeteners, acidulants,	
		buffering salts, anticaking agents, etc chemistry,	
		food uses and functions in formulations; indirect food	
		additives; toxicological evaluation of food	
		Additives	
	Flavour	Types of flavors, flavors generated during processing	12
	technology	- reaction flavors, flavor composites, stability of	
		flavours during food processing, analysis of flavours,	
		extraction techniques of flavours, flavor emulsions;	
		essential oils and oleoresins; authentication of	
		flavours etc.	
II	Proteins,	Isolation, modification, specifications, functional	10
	starches and	properties and applications in foods and as	
	lipids as	nutraceuticals	
	functional		
	ingredient		

B.E. (Food Tech) Course Scheme and Syllabus

2021

Applications	Manufacturing and applications of fibres from food	8
	sources, fructo-oligosaccharides.	
	Total=	42

Books Recommended:

Author Title

1. S.N. Mohindru Food Additives (Vol I & II)

2. Pomeranz Food Analysis

Title of the course : **Technology of Fats and Oils**

Subject Code : **PEFT - 721B**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- Composition of fats/oils and their importance and functions in foods.
- Different methods of extraction of fat/oil and different types of extractors.
- Different refining methods used for oils/fats and techniques to minimize losses.
- Hydrogenation and effect of different processing parameters on the process of hydrogenation and manufacturing technology of different fat products.
- Different chemical reactions and quality parameters to control the quality of different fats.

Course Outcomes:

After successful completion of this subject, the students will be able to

CO1	Explain the basic extraction methods by using different extractors	Understanding
	of Fats and Oils	
CO2	Explain the different methods of refining and techniques to	Understanding
	minimizes refining losses and effect of hydrogenation process	
CO3	Discuss the Chemistry of fats and oils and manufacturing	Understanding
	technology of different fats and fat rich products	
CO4	Explain the different quality parameters of fats and oils	Understanding
CO5	Discuss the soap processing and its application	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Spec Outc	gram cific omes SO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	3	0	1	2	3	1	1	3	2	1	2
CO2	3	2	1	1	1	3	1	0	2	2	1	1	1	2
CO3	3	3	3	1	3	3	1	0	0	1	2	2	3	3
CO4	2	3	3	3	1	1	0	1	2	2	1	1	2	3
CO5	2	1	1	3	2	1	1	0	0	2	1	1	1	3
Average	2.4	2	1.8	2.2	1.4	1.8	1	0.8	1	1.6	1.6	1.4	1.6	2.6

I I	Introduction		
	inti oddetion	Nutritional aspects of fats and oils - metabolism – fat level in	3
		the diet and effect on health, fat reduction in foods.	
		Importance and functions of fats and oils in foods,	
		composition of fats/oils from different animal sources and	
		oilseeds.	
(Oil extraction	Different methods of oil extraction, Important characteristics	6
		of oils and oil expression from oilseeds like,	
		mustard/rapeseed, coconut, sunflower, groundnut, sesame,	
		cotton. Machines (Mechanical expellers and solvent	
		extractors) used in the expression of oil, Calculations based	
		on the extraction processes	
(Oil/fat	Refining techniques: clarification, degumming,	6
I	purification	neutralization, bleaching, refining losses and deodorization,	
		Batch and continuous refining and losses	
I	Hydrogenation	Chemistry of hydrogenation, Effect of process conditions,	3
		Hydrogenation in Practice, Catalysts and catalysis.	
II (Chemistry of fats	Lipolysis, auto-oxidation, thermal decomposition, chemistry	3
8	and oils	of frying oils, inter-esterification, reversion	

Technology of	Butter, Margarine, dressings for food (Mayonnaise and Salad	8
individual fat	dressings, pourable - type dressings, reduced calorie	
products	dressing), Shortening, Lard, Salad, cooking and frying oil.	
	Blending and enrichment of edible oils, Speciality fats and	
	designer lipids for nutrition and dietetics.	
Different quality	Peroxide value, Saponification value, Iodine value, acid	3
parameters	value, TBA, RM value, P-value, Kries value, Adulteration in	
	oils and fats.	
Value added	value added products from vegetable oil refining industry	4
products and by-	like lecithin, wax, Vitamin-E, oryzanol. By-products from	
products	bran oil and oil refining industry,	
	Total=	36

Au	thor	Title
1.	Decker, Min, McDonald	Food Lipids and Health
2.	Chrysam, Erickson and others	Bailey's Industrial Oil and Fat Products
3.	Hamm and Hamilton	Edible Oil Processing
4.	Meyer	Food Chemistry
5.	Lawson	Food oils and fats
6.	Maran	Fats in food products
7.	Acharva	Oilseeds and Oil Milling in India

Title of the course : Food Processing Plant Layout and Design

Subject Code : PEFT - 722A

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- The various factors involved in the site selection and design of food plant.
- The processes involved in layout design.
- The concept of preparing cost estimate and economics
- The development and design consideration in different food industries.

Course Outcomes:

On successful completion of the subject, the students will be able to:

CO1	Execute the concepts, principles and theories for the location of	Applying
	food processing plant.	
CO2	Demonstrate plant layout problems by using different tools and	Applying
	techniques	
CO3	Execute techniques of project planning by using scheduling	Applying
	methods and interpret the cost analysis	
CO4	Implement the knowledge of materials applied for construction of	Applying
	food equipment and hygienic construction for food plant	
CO5	Design and setting up of new food processing plant as entrepreneur	Creating
	and/or consultant.	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)									Spec Outc	gram cific omes SO)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	3	1	2	1	0	1	1	2	2	1	3
CO2	3	2	1	1	2	3	1	0	1	1	2	2	3	3
CO3	2	1	1	3	1	3	1	1	0	2	2	1	2	1
CO4	3	1	1	2	1	1	1	1	2	1	1	2	3	3
CO5	3	2	1	1	1	3	1	1	0	2	2	1	2	2
Average	2.6	1.4	1	2	1.2	2.4	1	0.6	0.8	1.4	1.8	1.6	2.2	2.4

Unit	Main Topics	Course Outlines	Lecture
			(s)
Ι	Introduction	Plant design concepts, General design considerations for food	3
		processing industries, stages of plant design	
	Plant location	Introduction, factors involved in plant location decision,	8
		Territory and site specific factors, Influence of location on plant	
		layout, Subjective, qualitative and semi-quantitative techniques	
		for evaluating plant location alternatives: equal weights method,	
		variable weights method, weight-cum-rating method, locational	
		break-even analysis, Bridgeman's dimensional analysis,	
		composite measure method and median model of location	
		problem	
	Plant Layout	Types of manufacturing process, Plant layout problem,	11
		objectives and principles of layout; classical types of layout Viz.	
		product layout, process layout and stationary layout; plant layout	
		tools and techniques like process charts, process flow diagram,	
		Travel chart, machine data cards, material movement patterns,	
		visualization of layout by templates, machine models and	
		sketches, general guidelines for plant layout, space requirement	

		for machines, work stations and storage, symbols used for plant	
		design and layout plant layout procedures	
II	Project	Project planning, Techniques of project planning, Project	6
	Management	scheduling, Methods of project scheduling: Gantt charts and	
		Network scheduling, Basic terms, objectives and advantages of	
		Network analysis, various Network techniques like PERT and	
		CPM and related numerical problems	
	Cost Analysis	Classification of costs, analysis of production costs, depreciation	5
		and different method of calculating it, break-even analysis	
	Plant	Materials of construction of food equipment: Characteristics of	5
	Equipment and	suitable construction material like Stainless steel, Aluminium,	
	Buildings	Nickel and Plastic Materials; Hygienic construction and design	
		concepts; Types of factory buildings; Consideration in building	
		design, drainage, ventilation and illumination in food processing	
		industries	
	Layout of	Considerations in the layout of different types of food industries	6
	different	like cereal, pulses and oilseed industry, dairy Bakery, soft drinks,	
	industries	canning, dairy, rice and wheat mill.	
		Total=	43

Recommended Books:

Author	Title
1. O.P. Khanna	Production Engineering and Industrial Management
2. Moore	Plant Layout and Design
3. Mart and Telsang	Industrial engineering and production management
4. Peterse and Timmerhaus	Plant Design for Chemical Engineering
5. Rase and Barrow	Project Engineering of Process Plant
6. Farrall	

Title of the course : Innovative Techniques in Food Processing

Subject Code : **PEFT-722B**

L	T	P	Credits	Weekly Load
3	0	0	3	3

Course Objectives: Objective of this course is to impart knowledge about

- The concept of various novel food preservation techniques.
- Design of novel process equipments.
- Application of novel processing techniques in the preservation of foods.
- The principles behind working of various food processing techniques.

Course Outcomes:

On successful completion of the subject, the students will be able to:

CO1	Understand the membrane technology: MF, UF, NF & RO and	Understanding
	Super critical fluid extraction process in food industry	
CO2	Understand the application of microwave and radio frequency	Understanding
	wave technology in food processing	
CO3	Explain the working principle and advantage of high pressure	Understanding
	processing (HPP) in food preservation	
CO4	Discuss the working principle and advantage of Ohmic and	Understanding
	Radiation heating process in food processing	
CO5	Understand the Hurdle Technology and apply it to extend the	Applying
	shelf-life of food products	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)								Spec Outc	gram cific omes SO)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	1	3	1	1	1	2	2	1	3	3
CO2	3	1	1	2	2	3	1	0	1	0	2	1	2	3
CO3	3	3	3	2	3	3	2	0	1	1	2	2	3	1
CO4	3	1	1	3	2	3	3	1	0	1	2	1	2	1
CO5	1	1	3	3	3	3	2	0	1	3	2	2	3	3
Average	2.6	1.6	2	2.6	2.2	3	1.8	0.4	0.8	1.4	2	1.4	2.6	2.2

Unit	Main Topics	Course Outlines	Lecture (s)
I	Membrane	Understanding the concept of pressure activated membrane	6
	technology	processes: microfiltration, UF, NF and RO. Identification of	
		parameters for designing of UF, NF and RO modules.	
		Application of UF, NF and RO modules in food processing	
		industrial.	
	Supercritical	Understanding the concept near critical fluids NCF and super	4
	fluid extraction	critical extraction. Identification of parameters for designing	
		NCF and super critical extraction equipment. Application of	
		NCF and super critical extraction process in food processing.	
	Microwave and	Definition, advantages, mechanism of heat generation in	6
	radio frequency	microwave and radio frequency technology. Identification of	
	processing	parameters for designing microwave and radio frequency	
		heating equipment. Application of microwave and radio	
		frequency technology process in food processing.	
II	Hurdle	Types of preservation techniques and their principles,	4
	technology	concept of hurdle technology and its application.	
	High Pressure	Understanding the concept of high-pressure processing	4
	processing	technology with reference to the mechanism of microbial	
		inactivation. Identification of parameters for designing of	

	Total=	44
	products.	
	carrier of biomolecules while developing functional food	
	nano-composite packaging films and nano-emulsion as	
Nanotechnology	Principles and applications in foods with special reference to	4
processing	and pulsed.	
in food	electric field, ohmic heating, IR heating, inductive heating	
Newer techniques	Understanding the concept of high intensity light, pulse	12
	in food processing.	
	ultrasonic process equipment. Application of ultrasonication	
	inactivation. Identification of parameters for designing of	
processing	technology with reference to the mechanism of microbial	
Ultrasonic	Understanding the concept of ultrasonic processing	4
	processing.	
	HPP equipment. Application of HPP application in food	

Author	Title
1. G. W. Gould	New Methods of Food Preservation
2. R. P. Singh	Introduction to Food Engineering
3. Barbosa-Canovas	Novel Food Processing Technologies

Title of the course : Enzyme in Food Processing

Subject Code : **HDFT - 611**

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Objectives: Objective of this course is to impart knowledge about

- Enzyme, its classification, kinetics and function in foods.
- Different methods of enzyme production and purification.
- Application of enzymes in cereal and fruit and vegetable processing and milk and meat processing.
- Different method of enzyme immobilization techniques and their uses.

Course Outcomes: On successful completion of the subject, the students will be able to:

CO1	Know the different kind of enzymes and their activities	Understanding
CO2	Know different methods of enzyme production	Applying
CO3	Understand application of enzyme in cereal product and fruit and	Applying
	vegetable products and related benefits.	
CO4	Know the effect of enzyme on quality of meat and milk products	Applying
CO5	Get knowledge of immobilization techniques and its benefits	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)								Outc	cific				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	3	3	1	1	0	1	2	1	3	1
CO2	3	1	3	2	1	1	3	1	3	2	1	2	1	2
CO3	3	3	1	3	3	1	2	0	1	2	1	1	1	3
CO4	3	3	2	1	1	3	1	1	0	0	2	2	3	3
CO5	3	3	3	3	3	3	1	1	1	2	2	1	3	2
Average	3	2.4	2	2	2.2	2.2	1.6	0.8	1	1.4	1.6	1.4	2.2	2.2

Unit	Main Topics	Course Outlines	Lecture (S)
I	Introduction	Enzymes, definition, co-enzymes, cofactors, classification of	8
		enzymes and their functions. Mechanism of enzyme action,	
		enzyme kinetics, Line-Weaver Burk Plot, Numericals related	
		with enzyme kinetics, factors affecting enzyme action.	
	Enzyme	Selection of enzymes, sources of enzymes, advantages of	8
	production	microbial enzymes, production by solid substrate	
		fermentation and submerged fermentation, enzyme	
		extraction and purification.	
	Enzymes in	Enzymes in the processes of malting, brewing, baking and	6
	cereal processing	high fructose corn syrups (HFCS), glucose syrups.	
	Enzyme in fruit	Use of enzymes in fruit juice clarification, removal of	4
	processing	haziness and bitterness, wine clarification.	
II	Enzyme in meat	Meat tenderization, ageing, cheese processing	4
	and milk		
	Enzyme in fats	Enzymes causing quality changes in foods, enzymatic fat	4
	and oils	modification	
	Protein recovery	Enzymatic process for protein recovery	2
	Immobilized	Definition, Enzyme immobilization techniques and its	4
	Enzymes	benefits, use of immobilized biocatalysts in food processing	
		technology.	
		Total=	40

Author	Title
1. Tombs	Biotechnology in the Food Industry
2. Nagodwithana and Reeds	Enzymes in Food Processing
3. Godfrey	Industrial Enzymology
4. Kuddus	Enzymes in Food Processing

Title of the course : Basic Agricultural Process Engineering

Subject Code : **HDFT - 612**

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course objectives: Objective of this course is to impart knowledge about

- Production and consumption trends, structure, composition, quality evaluation of agricultural product
- Processing technologies for product development and value addition of various cereals, pulses and oilseeds

Course outcomes:

On successful completion of the subject, the students will be able to

CO1	Explain the harvesting methods, post harvest losses and threshing of	Understanding
	different grains	
CO2	Discuss the principles and implement the various cleaning, grading	Applying
	operation	
CO3	Interpret the role of moisture content and psychrometry in grain storage	Applying
CO4	Explain the principles of drying and different dryers and execute the	Applying
	drying of grains	
CO5	Explain the principles of various material handling equipments	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs		Programme Outcomes (POs)											Spe Outc	gram cific omes SO)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	3	3	2	2	0	0	1	2	2	3	2
CO2	2	3	2	3	1	1	1	0	2	2	1	1	2	2
CO3	1	3	2	1	0	0	2	1	0	1	2	2	2	2
CO4	2	2	1	1	0	2	1	0	0	1	2	2	2	2
CO5	2 2 1 2 0 1 1 1 2 2 1 1									1	2	2		
Average	1.8	2.2	1.6	2	0.8	1.2	1.4	0.4	0.8	1.4	1.6	1.6	2.2	2

Unit	Main Topics	Detailed Contents	Lectures
Ι	Introduction	Structure and composition of food grains, harvesting-	5
		optimum stage of harvest, methods of harvesting, post	
		harvest losses in durable and perishable crops.	
	Threshing	Types of threshers, types of threshing cylinders, working	8
		principles and their operation. Shelling and decortication	
		principle of operation. maize shellers, groundnut	
		decorticator - hand operated and motorised.	
	Cleaning and	Principles, particle motion during screening, screen	8
	grading	openings, ideal and actual screens, effectiveness of screen,	
		types of cleaners and graders; Air-screen cleaner-design	
		consideration of an air screen cleaner, disk separator,	
		Indented cylinder separator, Spiral separator, magnetic	
		separator, colour sorter, specific gravity separator,	
		cyclone separator -efficiency of separation - performance	
		index	
II	Moisture	Methods of determination, direct and indirect methods,	10
	content &	equilibrium moisture content, sorption isotherm, Properties	
	Psychrometry	of air, water vapour mixture, humidification,	
		dehumidification-psychrometry applied for food grains.	
	Drying	Principles, thin layer drying, constant - rate and falling-rate	8
		period of drying, rate period of drying, effect of different	
		factors on drying process, deep bed drying. Methods of	
		mechanical drying depending on modes of heat transfer.	
		Grain dryers - Types of mechanical dryers, Batch type and	
		continuous types.	
	Material	Types of handling and conveying systems for agricultural	8
	handling and	products and their design - belt conveyor, screw conveyor,	
	storage	bucket elevators and pneumatic	
		conveyors. Storage - conditions for safe storage of durable	
		commodities. Bag and bulk storage- Design of silos and	
		storage structures.	

Total=	47

Author

Title

1. Sahay & Singh Unit Operation in Agricultural Processing

2. Chakraverty, A. Postharvest Technology of Cereals and Pulses.

Title of the course : Instrumental Techniques in Food

Subject Code : **HDFT - 621**

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Objectives: Objective of this course is to impart knowledge about:

- The fundamentals of chromatography and spectroscopy principles, instrumentation and advantages and disadvantages of the techniques
- Data acquisition, interpret measurements and perform qualitative and quantitative analysis on selected foods.
- Matrix effects.
- The performance of these techniques for rapid and routine analysis as compared to reference methods

Course Outcomes: On successful completion of the subject, the student will be able to

CO1	Define key terms related to qualitative and quantitative physical and	Analyzing	
	chemical food analysis.		
CO2	Describe approaches necessary in sampling of food prior to its analysis.	Applying	
CO3	Describe the basic principles underlying analytical techniques associated	Analyzing	
	with food analysis.		
CO4	Describe physical and chemical techniques necessary for chromatographic	Analyzing	
	analysis and analytical instrumentation of food constituents.		
CO5	Demonstrate practical proficiency in a food analysis laboratory and critique	Analyzing	
	the advantages and disadvantages of one method of food analysis versus		
	another and select the appropriate instrumental procedure and course of		
	action for a food analysis problem.		

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs		Programme Outcomes (POs) Programme Outcomes (POs) Outcomes (PSC)												cific omes
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12							PO12	PSO1	PSO2				
CO1	2	1	3	3	1	0	1	1	0	2	1	2	3	1
CO2	2	3	3	1	1	3	1	1	0	2	1	2	2	2
CO3	3	2	2	3	3	1	3	1	0	2	2	1	3	3
CO4	2	2	2	1	1	2	2	1	0	2	1	1	1	3
CO5	1 3 1 2 2 3 1 1 0 1 2 2									3	3			
Average	2	2.2	2.2	2	1.6	1.8	1.6	1	0	1.8	1.4	1.6	2.4	2.4

Unit	Main Topic	Detailed Contents	Lectures
I	Introduction	Instrumental analysis in quality control, uses of instruments	6
		for quantitative and qualitative analysis, Refractometry and	
		its application in foods, Specific gravity, polarimeter	
	Sampling	Acceptance sampling: operational characteristics, risks,	6
		attribute sampling plans, administration of attribute,	
		sampling error	
	Chromatography	General principles. Types and application, Partition and	6
		adsorption chromatography, Paper, thin layer, gas liquid, ion	
		exchange and affinity chromatography. High Pressure Liquid	
		Chromatography.	
	Electrophoresis	Types, principles and application, Paper and gel	4
		electrophoresis. Polyacrylamide gel electrophoresis.	
II	Spectroscopy	Beers and Lambert's Law. Extinction coefficient. General	6
		principles of colorimeters and spectrophotometers, AAS,	
		Emmission spectroscopy, IR spectroscopy: NMR, FTIR.	
		Flourimetry, Spectroflourometers.	
	Rheology,	Rheological properties of food by Viscometer, RVA, XRD,	6
	Morphology	DSC, Thermogram	

Author

- 1. R. Wood, L. Foster, A. Damant and P. Key
- 2. Y. Pomeranz and C.E. Meloan
- 3. Otles S
- 4. Nielson

Title

Analytical Methods for Food Additives Food Analysis: Theory and Practice

Handbook of food analysis instruments

Food analysis

Title of the course : Food Rheology

Subject Code : **HDFT - 711**

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Objectives: Objective of this course is to impart knowledge about

- Texture and rheological measurement of various food products.
- Detailed rheology of foods.
- Various types of spectroscopy methods.

Course outcomes: On successful completion of the subject, the students will be able to

CO1	Explain the basic principle of food rheology.	Understanding
CO2	Interpret the rheological properties of various type of food	Applying
CO3	Interpret the rheological test result	Applying
CO4	Explain the textural properties of food	Understanding
CO5	Describe rheological, textural properties and sensory properties of	Understanding
	food	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs		Programme Outcomes (POs)											Spec Outco	gram cific omes SO)
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12							PSO1	PSO2					
CO1	2	1	3	3	1	0	1	1	0	2	1	2	3	1
CO2	2	3	3	3	3	1	1	0	0	2	2	2	2	2
CO3	3	3	2	3	3	2	1	1	0	2	2	2	3	3
CO4	2 2 2 1 2 1 2 1 0 2 1 2									2	2	2		
CO5	1 3 2 2 2 1 1 1 0 2 2 1									1	3	3		
Average	2	2.4	2.4	2.4	2.2	1	1.2	0.8	0	2	1.6	1.8	2.6	2.2

Unit	Main Topic	Detailed Contents	Lecture (s)
Ι	Introduction	Food rheological behaviour. Rheology: definitions and	4
		importance. Rheological tests. Fundamental rheological tests,	
		Working principle of rheometer and various viscometer	
	Fundamentals	Rheology of macromolecules suspensions: relative viscosity,	8
	of rheology	specific and reduced viscosity and intrinsic viscosity. Applied	
		rheology: consistency and texture. fundamental food	
		characteristic, sensory evaluation versus instrumental evaluation.	
		The importance of glassy state in food quality and texture	
		preservation. Application of rheology concepts (non Newtonian	
		fluid behavior	
II	Textural	Requirement of test systems for measuring food texture. Types of	8
	measurements	texture Instrument and their operating mechanisms, Calibration,	
		Performance of test and measurements of test parameters.	
		Interpretation of test results.	
	Application-I	Textural properties of fruits & vegetables; Dough, Pasta and	8
		Baked products; dairy products; Meat; Fat and fat products; and	
		their instrumental Measurements.	
	Application-II	Rheology of chocolate, Textural characteristics of food	8
		emulsions, Functions of emulsifiers in relation to food texture,	
		Sensory measurement of food texture and texture profile.	
		Total=	36

Title of the course : Food Processing and Preservation

Subject Code : MDFT - 511

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Objectives: Objective of this course is to impart knowledge about

- Importance of food processing and preservation, classification of foods on the basis of shelf life, pH and origin.
- Basic understanding of the concept of food spoilage.
- Basic understanding of Low and High Temperature Preservation.
- Low Moisture and Chemical preservation
- Radiation preservation.

Course Outcomes: On successful completion of the subject, the students will be able to:

CO1	Discuss fundamental principles of food preservation	Understanding
CO2	Describe the principles of low temperature preservation	Understanding
CO3	Explain thermal processing and execute high temperature	Applying
	processing in food industry	
CO4	Discuss the concept of water activity and preservation by Drying	Understanding
	& Dehydration	
CO5	Describe the principles of non-thermal preservation methods	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)										Spe Outc	gram cific omes SO)		
	РО	РО	РО	РО	РО	PO	PO	РО	РО	PO1	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	2	3	2	1	1	0	0	1	2	2	1	3	3
CO2	3	2	3	2	1	1	1	1	1	2	2	1	3	3
CO3	3	3	3	2	3	3	1	1	1	1	2	1	3	3
CO4	3	3	3	3	2	3	1	1	1	3	2	1	3	3
CO5	3	2	3	1	2	1	1	0	0	1	1	1	3	3
Averag														
e	3	2.4	3	2	1.8	1.8	0.8	0.6	0.8	1.8	1.8	1	3	3

Unit	Main Topics	Course Outlines	Lecture (s)
I	Introduction	Importance of food processing and preservation; classification of foods on the basis of shelf life, pH, origin	6
	Food spoilage	Different types of food spoilage viz. microbiological, enzymatic, chemical and physical and their effects on food quality	6
	Low Temperature	Low temperature requirement for different foods — Refrigeration, slow and fast freezing, freezing	8
	Preservation	process; Types of freezer, their advantages and limitations; Storage and thawing of frozen food	
П	High Temperature Preservation	Canning: Definition, advantages and disadvantages; Can formation; Unit operations in canning: Selection of raw material, peeling/coring, blanching, filling, brining/syruping, exhausting, sealing, processing, cooling, labeling and storage	8
	Low Moisture preservation	Drying and dehydration methods- Solar, cabinet, tray and drum	6

B.E. (Food Tech) Course Scheme and Syllabus

2021

Introduction, classification and applications.	4
Introduction, sources, and applications.	4

Recommended Books:

Author Title

1. Desrosier Technology of food preservation

2. Fennema. Karrel Principles of Food Science Vol-I

Title of the course : Food Biochemistry and Nutrition

Subject Code : PCFT- 521 / MDFT - 521

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course objectives: Objective of this course is to impart knowledge about

- Concept of human food requirements and digestion.
- Best use of available nutrients in order to full fill the requirements of balanced diet for the consumers.
- The role of safe food in health promotion and disease prevention
- The nutritional daily requirements of various age groups as per ICMR, FA

Course outcomes: On successful completion of the subject, the students will be able to:

CO1	Demonstrate the role of enzymes and their importance in food	Understandings
	biochemical processing and food digestion.	
CO2	Describe about the chemical/biochemical properties and metabolic	Understandings
	pathways of carbohydrates, lipids, and proteins.	
CO3	Familiarize/interprets various aspects of food nutritional	Applying
	requirements for health sustainability and concept of balance diet	
CO4	Elaborate/apply about the techniques used to calculate protein	Applying
	quality, dietary allowances of different people and techniques of	
	nutritional assessment	
CO5	Describe and demonstrate the society to develop preventive	Applying
	measures for balanced diet and eradication of malnutrition.	

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	0	3	1	0	1	0	0	1	3	2	3	2
CO2	1	2	1	2	2	2	0	0	2	2	2	1	3	2
CO3	3	0	2	2	3	3	1	3	1	2	1	3	3	2
CO4	2	2	1	1	2	2	0	3	1	0	2	3	3	3
CO5	1	0	1	2	0	3	1	1	1	1	2	2	3	3
Average	1.6	1.2	1	2	1.6	2	0.6	1.4	1	1.2	2	2	3	2.4

Unit	Main Topics	Course Outlines	Lecture (s)
I	Enzymes	Enzymes nomenclature and classification, factors	10
		effecting enzyme activity, active site of enzyme,	
		co-enzymes, co-factors, iso-enzymes, specificity of	
		enzymes, enzyme inhibition and activation,	
		mechanism of enzyme action, enzyme	
		thermodynamics, enzyme kinetics, enzyme	
		applications	
	Metabolism of	Digestion and absorption, major pathways of	12
	carbohydrates	carbohydrates metabolism (glycolysis,	
		gluconeogenesis, Kreb's cycle, glycogenesis,	
		glycogenolysis), galactose and fructose	
		metabolism, Disorders of carbohydrate metabolism	
	Metabolism of	Digestion and absorption, β-oxidation of fatty	9
	lipids	acids, Biosynthesis of fatty acids and	
		triacylglycerol. Functions of lipids in the diet.	
II	Metabolism of	Digestion and absorption, amino acid pool,	10
	Proteins	nitrogen balance, metabolism of amino acids	
		(general aspects, deamination, transamination),	

	metabolism of ammonia, Biosynthesis of protein, urea cycle, disorders of amino acid metabolism.	
Biological Oxidation	Bioenergetics, high energy compounds, biological oxidation, electron transport chain, oxidative phosphorylation and inhibitors. Shuttle pathways	6
Food Nutrition	Functions and energy values of foods, basal energy metabolism: BV, NPU, BMR, PER calculations, dietary allowances and standards for different age groups, nutritive value of Indian food, techniques for assessment of human nutritional status, balance diet Causes and preventions of malnutrition.	14
	Total	61

Author	Title

1. A.V.V.S Ramaroa Biochemistry

2. Lahhanger Principles of Biochemistry

3. Mohinder Singh Biochemistry

4. M.S.Swaminathan Food and Nutrition Vol. I&II

5. U. Satyanarayana & U. Charkrapany Biochemistry (Third Ed.)

Title of the course : Plant Food Product Technology

Subject Code : MDFT - 611

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course objectives: Objective of this course is to impart knowledge about

- Milling of cereals & pulses and bakery products
- Extrusion & extruded products and oilseed processing
- Processing of fruits, vegetables and spices

Course outcomes: On successful completion of the subject, the students will be able to:

CO1	Explain the factor affecting the shelf life of product	Understanding
CO2	Discuss milling of cereals & pulses and bakery products	Understanding
CO3	Describe the extrusion and extruded products	Understanding
CO4	Explain the processing of oilseeds	Understanding
CO5	Describe Processing of fruits, vegetables and spices	Understanding

	CO/PO Mapping													
	(No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs	Programme Outcomes (POs) COs							Outc	gram cific omes SO)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	3	3	2	2	0	0	1	2	2	3	2
CO2	2	3	2	3	1	1	1	0	2	2	1	1	2	2
CO3	1	3	2	1	0	0	2	1	0	1	2	2	2	2
CO4	2	2	1	1	0	2	1	0	0	1	2	2	2	2
CO5	2	2	1	2	0	1	1	1	2	2	1	1	2	2
Average	1.8	2.2	1.6	2	0.8	1.2	1.4	0.4	0.8	1.4	1.6	1.6	2.2	2

Unit	Main Topics	Detailed Contents	Lectures
I	Introduction	Scope and importance of food processing- Properties of	8
		food- Physical, thermal, mechanical, sensory.	
		Characteristics of tissues and non-tissues foods, Degree of	
		perishability of unmodified foods, Causes of quality	
		deterioration and spoilage of perishable foods, intermediate	
		moisture foods, wastage of foods	
	Milling of	Milling operations for cereals and pulses, various types of	8
	cereals &	improved machinery employed in rice and other grain	
	pulses and	milling, advances in baking technology, recent development	
	bakery	in bakery ingredient and their functionality.	
	products		
	Extrusion and	Principle of extrusion, advances in extrusion and co-	8
	extruded	extrusion processes, advances in extruded and other ready to	
	products	eat food products e.g. Roasted toasted and fried products,	
		instant ready to use formulations,	
II	Processing of	Processing of oilseeds for oil and protein products, advances	4
	oilseeds	in oil processing, recent modification in oil,.	
	Processing of	Fruits and vegetable processing, Recent trends in fruits and	12
	fruits,	vegetables preservation and processing techniques, Fruits	
	vegetables and	and vegetable-based products, processing of common dry	
	spices	spices and possible adulterants identification.	
	l	Total=	40

Author (s)	Title
1. Sivasankar	Food Processing and Preservation
2. P.J Fellows	Food Processing and Preservation
3. M.Shafeiur Rahman	Food Processing Technology: Principles and Practice

Food Processing and Preservation 4. Khetarpaul N

Title of the course : Unit Operations in Food Engineering

Subject Code : MDFT - 621

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Objectives: Objective of this course is to impart knowledge about

- The theory and application of basic unit operations performed in various food processing industries.
- The size reduction and mixing operations of different types of foods necessary in the processing of foods.
- The engineering principles to analyze and design the various unit operations and equipments
- The separation of valuable components from the liquid, solid streams by physical, contact equilibrium processes as well as distillation process

Course Outcomes: On successful completion of the subject, the students will be able to:

CO1	Describe and discuss the processing of foods in terms of	Analyzing
	commonunit operations like size reduction, mixing, and	
	separation.	
CO2	Apply computational skills in calculating the energy required	Applying
	in size reduction, mixing operations.	
CO3	Understand the construction, working and applicability of	Analyzing
	various size reduction, mixing and separation equipments.	
CO4	Analyse the optimum value of reflux ratio to achieve best	Analyzing
	quality product at minimum total cost in case of the continuous	
	distillation system.	
CO5	Able to understand the principle and application of leaching	Analyzing
	and extraction process.	

	CO/PO Mapping (No correlation (0) / Weak (1) / Medium (2) / Strong (3) indicates strength of correlation)													
COs					Prog	gramme	e Outco	omes (P	Os)				Sp Out	ogram pecific tcomes PSO)
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3	3	1	3	1	0	0	2	2	1	3	2
CO2	2	1	2	2	2	3	0	1	2	1	1	2	3	1
CO3	1	1	2	3	1	3	2	0	1	2	3	0	3	1
CO4	2	2	1	1	1	1	0	0	1	1	1	1	2	2
CO5	3	3	2	1	3	3	1	1	1	1	2	0	2	2
Average	2.2	1.8	2	2	1.6	2.6	0.8	0.4	1	1.4	1.8	0.8	2.6	1.6

Unit	Main Topic	Detailed Contents	Lectures
Ι	Introduction	Definition and application in food processing.	2
	Size reduction	Theory of communition, Ritinger's law, Kick's law,	6
		Bond's law and their applications in calculation of	
		energy required in grinding, Crushing efficiency, Size	
		reduction equipment used in food industry.	
	Mixing	Theoretical aspects of solid mixing. Mixing index, rate	6
		of mixing, Theory of liquid mixing, Equipment for	
		liquid and solid mixing.	
	Sieving	Separation based on size, Effectiveness of screens,	6
		Types of screens, Factors affecting the sieving process,	
		Fineness modules and particle size distribution	
	Sedimentation	Theory, Gravitational sedimentation of particles in	4
		liquids and gases, Sedimentation equipment.	
II	Centrifugal	Basic equation, centrifugal clarification, Equipments.	4
	separation		
	Filtration	Theoretical aspects, Fundamental equation for filtration,	5
		Filtration equipment.	
	Crystallization	Rate of crystallization, crystallization equilibrium.	4

Distillation	Liquid vapor equilibrium, distillation of binary mixtures,	6
	simple distillation, continuous distillation, flash distillation,	
	steam distillation.	
Leaching and	Gas – Liquid equilibria, Solid – Liquid equilibria,	6
extraction	Extraction-Solid Liquid extraction, Liquid-Liquid	
	extraction, stage equilibrium extraction.	
	Total=	48

Author Title

1. P. Fellows Food Processing Technology

2. R. L. Earle Unit Operations in Food Processing

Title of the course : Engineering Properties of Foods

Subject Code : MDFT - 711

L	T	P	Credits	Weekly Load
3	1	0	4	4

Course Objectives: Objective of this course is to impart knowledge about

- The various engineering properties of biomaterials.
- The measuring /determination of the various engineering properties of biomaterials.
- The application of engineering properties in designing process equipment.

Course outcomes: On successful completion of the subject, the students will be able to

CO1	Acquire knowledge on various engineering properties of	Analyzing
	biomaterial/food materials.	
CO2	Acquire knowledge on techniques of measurement/determination of	Analyzing
	engineering properties.	
CO3	Acquire knowledge on engineering properties of biomaterials and its	Analyzing
	application in designing of process equipments and storage	
	structures.	
CO4	Acquire knowledge on engineering properties of biomaterials and its	Analyzing
	application in the development of novel food processing techniques.	
CO5	Acquire knowledge on engineering properties of biomaterials and its	Analyzing
	application in the quality control of processed food products.	

Unit	Main Topic	Detailed Contents	Lectures
I	Introduction	Biomaterials and their properties in relation to processing,	4
		their role in the development of new products and processes.	
	Physico-Chemical	Physico-chemical characteristics: Definition, concept and	8
	Characteristics	understanding of shape, sphericity, size, volume, density,	
		porosity, surface area, coefficients of friction, and angle of	
		repose of food materials. Various techniques used in the	
		measurement/determination of engineering properties.	
		Influence of proximate composition/ chemical constituents	
		on physical properties of food materials and its influence in	
		processing and design of process equipments.	
	Mechanical and	Flow behaviour properties of food materials: definition and	8
	Rheological	concept in general and detailed understanding on granular	
	Properties	and powdered food materials.	
		Textural profile analysis and interpretation of data of food	
		products using various types of food texture analyzer and	
		interpretation of data.	
		Mechanical damage on food its significance in causing	
		biological and chemical reactions. Mechanical damage:	
		detection and interpretation of data. Static and dynamic	
		resistance to mechanical damage: comparison and	
		evaluation. Impact damage: damage under dead load,	
		vibration damage-stress cracking.	
		Drag coefficients, terminal velocity in agricultural materials:	7
	Aero and	definition, concepts understanding.	
	hydrodynamic	Determination/measurement of aero and hydrodynamic	
		properties. Application of aero and hydrodynamic properties:	
		processing, handling of agricultural produce and designing of	
		process equipments.	
II	Thermal,	Specific heat, thermal conductivity, thermal diffusivity,	7
	Electrical and	electrical resistance and conductance, dielectric constant,	
		reflectivity, transmitivity and absorbtivity of incident rays:	

Optical	definition, concepts understanding.	
Properties	Determination/measurement of thermal, electrical and	
	optical properties of agricultural materials/biomaterials.	
	Application of thermal, electrical and optical properties:	
	processing, handling of agricultural produce and designing of	
	process equipments.	
Applications	Application of engineering properties in process	6
	development as well as design and operation of equipment	
	and structures associated with handling, processing and	
	storage of raw as well as processed food products and	
	applications in the development of novel processing	
	techniques.	
	Total=	40

Recommended Books

Author	Title
1. M.A. Rao and S.S. H. Rizvi	Engineering Properties of Foods
2. J. M. Aguilera & D. W. Stanley	Microstructural principles of food processing and
Engineering	
3. N. N. Mohsenin	Physical properties of plant and animal materials